Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
基本信息
- 批准号:10630233
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:A549AddressAgingAnabolismApoptosisBindingBiochemicalBiologicalBiologyBiomassCRISPR/Cas technologyCell Cycle ArrestCell SurvivalCellsChemicalsClinicClinicalComplexConsumptionDNA MethylationDNMT3aDataDevelopmentDiabetes MellitusDiseaseDrug TargetingEnvironmentEnzymesEpigenetic ProcessEssential Amino AcidsExhibitsFRAP1 geneGeneticGenetic TranscriptionGlucoseGlutamineGoalsGrowthGrowth FactorHela CellsHomeostasisHumanHuman Cell LineImmunosuppressionIntronsIsotope LabelingLinkLipidsMEL GeneMalignant NeoplasmsMammalian CellMeasuresMessenger RNAMetabolicMetabolic PathwayMetabolic syndromeMetabolismMethionineMethionine Metabolism PathwayMethylationMethyltransferaseModificationMolecularMutateNeurodegenerative DisordersNutrientObesityOrganPC3 cell linePathologicPathway interactionsPatientsPhosphorylation SitePhosphotransferasesPhysiologicalPositioning AttributeProcessProliferatingProtein BiosynthesisProteinsProteomicsRNARNA InterferenceRNA methylationReactionRegulationReportingRibosomal RNARoleS-AdenosylhomocysteineS-AdenosylmethionineSignal PathwaySignal TransductionSyndromeSystemTherapeuticTherapeutic InterventionTissuesTracerTranscriptional Regulationc-myc Genescell growthcell motilitydietarydrug discoveryhistone methylationinhibitorinsightmacromoleculemetabolic ratemetabolomicsmethionine adenosyltransferasemouse modelneoplastic cellnervous system disordernovelnucleotide metabolismpre-clinicalside effectstable isotopetargeted treatmenttherapeutic targettumortumor growth
项目摘要
SUMMARY
The mechanistic target of rapamycin complex 1 (mTORC1) senses and integrates diverse environmental signals
to control energy and nutrient-consuming biosynthetic processes, such as protein, lipid, and nucleotide
synthesis. mTORC1 stimulates anabolic cell growth through posttranslational and transcriptional mechanisms
leading to increased macromolecule synthesis a prerequisite to augment cellular biomass priming cells for
growth and division. In many diseases, the prominence of mTORC1 signaling reinforces the importance of
considering targeting mTORC1 signaling in several diseases including neurodegenerative disorders, diabetes,
tumor syndromes, and aging. However, direct mTORC1 targeted therapies, being conceptually and preclinically
a promising target, displayed only limited efficacy in human patients. Therefore, a better understanding of the
biology downstream of mTORC1 and the development of more effective and specific therapeutic strategies in
the treatment of mTORC1-driven diseases are needed. To achieve the biosynthetic demands accompanying
proliferation, cells must increase the transport of nutrients from the environment. Glucose, lactate, and glutamine
are the principal nutrients that promote biosynthesis and survival in mammalian cells. An emerging aspect of
nutrient utilization in aging and proliferative diseases includes the role of dietary methionine restriction, which
was recently explored in the context of obesity, metabolic syndrome, and cancer. Methionine is an essential
amino acid that is catabolized and recycled in a sequence of metabolic reactions designated as the methionine
cycle. Methionine and ATP are converted into the universal methyl donor S-adenosylmethionine (SAM) via the
methionine adenosyltransferase 2 alpha (MAT2A) enzyme. Under this proposal, we propose to study the
influence of mTORC1 signaling on S-adenosylmethionine (SAM) synthesis and the subsequent methylation
processes supporting anabolic metabolism. We have identified that mTORC1 stimulates SAM synthesis in
various cell settings through direct transcriptional control of MAT2A expression by c-MYC. We propose to
evaluate the influence of mTORC1 signaling on SAM synthesis in a variety of human cells (Specific Aim1). Will
identify the mechanisms by which mTORC1 signaling promotes RNA methylation, particularly the N6-
methyladenosine (m6A) mark. We will determine the role of m6A on RNA downstream of mTORC1 in the control
of cell growth (Specific Aim2). Furthermore, we will determine the implication of the mTORC1-MAT2A axis on
tumor growth and the potential therapeutic strategy derived from this mechanism (Specific Aim3). Thus, the
overall goal of this proposal is to decipher the molecular mechanisms by which mTORC1 controls RNA
methylation in normal and pathological settings. We anticipate that the proposed studies will yield new insights
into how SAM levels alter anabolic metabolism and will uncover therapeutic targets to perturb mTORC1-driven
diseases.
概括
雷帕霉素复合物 1 (mTORC1) 的机制靶点感知并整合不同的环境信号
控制能量和营养消耗的生物合成过程,例如蛋白质、脂质和核苷酸
合成。 mTORC1 通过翻译后和转录机制刺激合成代谢细胞生长
导致大分子合成增加,这是增加细胞生物量的先决条件,启动细胞
生长和分裂。在许多疾病中,mTORC1 信号传导的重要性凸显了
考虑在多种疾病中靶向 mTORC1 信号传导,包括神经退行性疾病、糖尿病、
肿瘤综合征和衰老。然而,直接的 mTORC1 靶向疗法在概念上和临床前都处于
一个有希望的目标,但在人类患者中仅显示出有限的疗效。因此,更好地了解
mTORC1 的生物学下游以及更有效和更具体的治疗策略的开发
需要治疗 mTORC1 驱动的疾病。为了实现伴随的生物合成需求
增殖时,细胞必须增加从环境中输送营养物质。葡萄糖、乳酸和谷氨酰胺
是促进哺乳动物细胞生物合成和存活的主要营养素。一个新兴的方面
衰老和增殖性疾病中的营养利用包括饮食蛋氨酸限制的作用,这
最近在肥胖、代谢综合征和癌症的背景下进行了探索。蛋氨酸是人体必需的
在一系列代谢反应中被分解代谢和再循环的氨基酸,称为蛋氨酸
循环。甲硫氨酸和 ATP 通过以下途径转化为通用甲基供体 S-腺苷甲硫氨酸 (SAM)
甲硫氨酸腺苷转移酶 2 α (MAT2A) 酶。根据这项建议,我们建议研究
mTORC1 信号传导对 S-腺苷甲硫氨酸 (SAM) 合成和随后甲基化的影响
支持合成代谢的过程。我们发现 mTORC1 刺激 SAM 合成
通过 c-MYC 对 MAT2A 表达的直接转录控制来调节各种细胞设置。我们建议
评估 mTORC1 信号传导对多种人类细胞中 SAM 合成的影响(具体目标 1)。将要
确定 mTORC1 信号传导促进 RNA 甲基化的机制,特别是 N6-
甲基腺苷 (m6A) 标记。我们将在对照中确定 m6A 对 mTORC1 RNA 下游的作用
细胞生长(具体目标2)。此外,我们将确定 mTORC1-MAT2A 轴对
肿瘤生长以及源自该机制的潜在治疗策略(具体目标3)。因此,
该提案的总体目标是破译 mTORC1 控制 RNA 的分子机制
正常和病理情况下的甲基化。我们预计拟议的研究将产生新的见解
研究 SAM 水平如何改变合成代谢,并将揭示扰乱 mTORC1 驱动的治疗靶点
疾病。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GATOR2 rings GATOR1 to speak to mTORC1.
- DOI:10.1016/j.molcel.2022.12.011
- 发表时间:2023-01-05
- 期刊:
- 影响因子:16
- 作者:Sahu U;Ben-Sahra I
- 通讯作者:Ben-Sahra I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam BEN-SAHRA其他文献
Issam BEN-SAHRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam BEN-SAHRA', 18)}}的其他基金
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10469579 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10277131 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Regulation of de novo purine synthesis by the MAPK/ERK pathway
MAPK/ERK 途径对嘌呤从头合成的调节
- 批准号:
10539252 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Regulation of de novo purine synthesis by the MAPK/ERK pathway
MAPK/ERK 途径对嘌呤从头合成的调节
- 批准号:
10321274 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Regulation of de novo purine synthesis by the MAPK/ERK pathway
MAPK/ERK 途径对嘌呤从头合成的调节
- 批准号:
10078280 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Linking Oncogenic Signaling to Tumor Metabolism
将致癌信号传导与肿瘤代谢联系起来
- 批准号:
9477858 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10469579 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10277131 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Mechanisms that control the progression from premalignant lesions to adenocarcinomas in the lung
控制肺癌前病变进展为腺癌的机制
- 批准号:
9305499 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Mechanisms that control the progression from premalignant lesions to adenocarcinomas in the lung
控制肺癌前病变进展为腺癌的机制
- 批准号:
9459856 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Mechanisms that control the progression from premalignant lesions to adenocarcinomas in the lung
控制肺癌前病变进展为腺癌的机制
- 批准号:
9899946 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别: