Tissue engineered Nigrostriatal Pathway as a testbed for evaluating axonal pathophysiology in Parkinson's disease.

组织工程黑质纹状体通路作为评估帕金森病轴突病理生理学的试验台。

基本信息

  • 批准号:
    10664940
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMARY Parkinson’s Disease (PD) is a progressive neurodegenerative disease with 50,000-60,000 diagnoses annually and over 1 million Americans afflicted in total. PD-associated motor symptoms arise from the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Because SNpc neurons send long- projecting axons to the striatum, this stereotypical neurodegeneration robs the striatum of crucial dopaminergic inputs and thereby renders an important motor feedback pathway ineffective. Alpha synuclein protein is known as the pathological hallmark of PD pathology. The function of alpha synuclein in the healthy brain is not completely understood, however it is transported down axons in abundance, is highly enriched in presynaptic terminals, and is believed to be responsible for the transmission and progression of PD pathology across different regions of the nervous system. Although researchers have learned a great deal about PD pathophysiology through cellular and animal models, the findings have had limited translational impact due to challenges in recapitulating the most disease-relevant attributes of human brain structure and function. In particular, there are limitations of current in vitro and in vivo models to recapitulate essential features of human disease related to axon pathophysiology and synuclein transmission. For instance, a key feature related to early SNpc vulnerability is that each dopaminergic neuron features a long-projecting axon with complex arborization that can total 15 feet in length within the striatum, incurring unique transport and metabolic needs of these neurons. This feature of long axonal projections from human derived dopaminergic neurons – the human source ensuring a genetic endowment capable of developing and responding to synucleinopathy – projecting to a striatal neuronal source has been absent in preclinical models of PD thereby underrepresenting the role of axonopathy and metabolic susceptibility in PD pathogenesis. To address this need, we have developed the first tissue engineered nigrostriatal pathway (TE-NSP) recapitulating key elements of the native pathway: discrete human stem cell derived, phenotypically-controlled neuronal populations connected by long- projecting axonal tracts. This project will validate TE-NSPs as the first PD model featuring anatomically inspired microtissue, and then apply this novel platform for the study of PD axonopathy, mechanisms of synuclein transmission, and pharmacological interventions to block axon-mediated spread of pathological alpha-synuclein across discrete brain structures. We will first demonstrate that TE-NSPs appropriately recapitulate the relevant systems-level architecture by identifying all source and target cell types, characterizing synaptic formation with presynaptic and postsynaptic markers, and demonstrating input-output based on evoked dopamine release (AIM 1). We will then model PD via the addition of exogenous alpha synuclein fibrils and characterize acute axonal pathophysiological changes to axon length and density, tyrosine hydroxylase expression, alpha synuclein transfer from dopaminergic to medium spiny neurons, and affects on dopamine release (AIM 2). Finally, we will utilize TE-NSPs as a testbed for evaluating therapeutic strategies aimed at inhibiting alpha synuclein spread through MTOR inhibition (AIM 3). We have assembled a multi- disciplinary team of researchers consisting of stem cell specialists, neurobiologists, tissue engineers, and clinicians to validate and apply this novel in vitro platform. Successful demonstration of this platform will significantly advance a translational approach to ultimately build personalized TE-NSPs using dopaminergic neurons derived from PD patients to evaluate the neuroprotective efficacy of pharmacological therapies targeted at preventing alpha synuclein transmission to delay and/or prevent axonal/neuronal degeneration in a patient-specific manner.
Project Simary 帕金森氏病(PD)是一种进行性神经退行性疾病,每年有50,000-60,000次诊断 超过100万美国人遭受了折磨。与PD相关的运动症状是由选择性丧失的 黑质Nigra Pars Commacta(SNPC)中的多巴胺能神经元。因为SNPC神经元发送长期 将轴突投射到纹状体上,这种刻板的神经变性剥夺了关键多巴胺能的纹状体 输入,从而使一个重要的电机反馈途径无效。 α突触核蛋白蛋白是已知的 作为PD病理学的病理标志。健康大脑中α突触核素的功能不是 完全理解,但是,它以抽象的方式将轴突传递到轴突中,高度富集在突触前 终端,被认为负责PD病理的传播和进展 神经系统的不同区域。尽管研究人员对PD学到了很多东西 通过细胞和动物模型的病理生理学,由于 在概括人脑结构和功能最重要的疾病属性方面面临的挑战。在 特别是,当前的体外和体内模型存在局限性,以概括人类的基本特征 与轴突病理生理学和突触核蛋白传播有关的疾病。例如,与 早期SNPC脆弱性是每个多巴胺能神经元具有复杂的长注射轴突 在纹状体内总长15英尺的树木化,产生了独特的运输和代谢需求 这些神经元。来自人类衍生的多巴胺能神经元的长轴突投射的这一特征 - 人类来源确保遗传捐赠能够发展和反应突触核苷 - PD的临床前模型中没有投射到纹状体神经元来源,因此代表性不足 轴突病和代谢易感性在PD发病机理中的作用。为了满足这种需求,我们有 开发了第一个组织工程的黑质纹状体途径(TE-NSP)概括天然的关键要素 途径:衍生出的离散的人类干细胞,表型控制的神经元种群,由长期连接 投射轴突区。该项目将验证TE-NSP作为解剖学上的第一个PD模型 灵感的微动物,然后将这个新颖的平台应用于PD轴突病的研究 综合蛋白的传播和药物干预措施以阻断病理的轴突介导的扩散 跨离散大脑结构的α-核蛋白。我们将首先证明TE-NSP适当 通过识别所有源和目标单元格的类型来概括相关的系统级体系结构 用突触前和突触后标记表征突触形成,并演示输入输出 基于诱发的多巴胺释放(AIM 1)。然后,我们将通过添加外源α建模PD 综合素原纤维并表征急性轴突病理生理学对轴突长度和密度,酪氨酸的变化 羟化酶表达,α突触核蛋白从多巴胺能转移到中刺神经元,并影响 多巴胺释放(AIM 2)。最后,我们将利用TE-NSP作为评估治疗策略的测试台 旨在通过MTOR抑制抑制α突触核蛋白扩散(AIM 3)。我们已经组装了一个 由干细胞专家,神经生物学家,组织工程师和 临床医生来验证并应用这种新颖的体外平台。这个平台的成功演示将 显着提高了一种翻译的方法,最终使用多巴胺能建立个性化的TE-NSP 来自PD患者的神经元以评估药物治疗的神经保护效率 针对防止α综合蛋白的传播延迟和/或防止轴突/神经元变性 特定于患者的方式。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
共 1 条
  • 1
前往

JOHN Eric DUDA的其他基金

Tissue engineered Nigrostriatal Pathway as a testbed for evaluating axonal pathophysiology in Parkinson's disease.
组织工程黑质纹状体通路作为评估帕金森病轴突病理生理学的试验台。
  • 批准号:
    10215233
    10215233
  • 财政年份:
    2020
  • 资助金额:
    --
    --
  • 项目类别:
Tissue engineered Nigrostriatal Pathway as a testbed for evaluating axonal pathophysiology in Parkinson's disease.
组织工程黑质纹状体通路作为评估帕金森病轴突病理生理学的试验台。
  • 批准号:
    10477195
    10477195
  • 财政年份:
    2020
  • 资助金额:
    --
    --
  • 项目类别:
Tissue engineered Nigrostriatal Pathway as a testbed for evaluating axonal pathophysiology in Parkinson's disease.
组织工程黑质纹状体通路作为评估帕金森病轴突病理生理学的试验台。
  • 批准号:
    10005614
    10005614
  • 财政年份:
    2020
  • 资助金额:
    --
    --
  • 项目类别:
Chronic neurodegenerative and neurophysiological sequela of closed-head TBI
闭合性头颅脑损伤的慢性神经退行性和神经生理学后遗症
  • 批准号:
    9260705
    9260705
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:
Chronic neurodegenerative and neurophysiological sequela of closed-head TBI
闭合性头颅脑损伤的慢性神经退行性和神经生理学后遗症
  • 批准号:
    8998994
    8998994
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:
Chronic neurodegenerative and neurophysiological sequela of closed-head TBI
闭合性头颅脑损伤的慢性神经退行性和神经生理学后遗症
  • 批准号:
    8976854
    8976854
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:
Chronic neurodegenerative and neurophysiological sequela of closed-head TBI
闭合性头颅脑损伤的慢性神经退行性和神经生理学后遗症
  • 批准号:
    8398487
    8398487
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:

相似国自然基金

阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
  • 批准号:
    82302281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
  • 批准号:
    22304039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
  • 批准号:
    82300173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
  • 批准号:
    82360957
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
  • 批准号:
    10727237
    10727237
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
  • 批准号:
    10587627
    10587627
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
  • 批准号:
    10593622
    10593622
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
    10572539
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
  • 批准号:
    10657968
    10657968
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别: