Capturing Transient Protein and Nucleic Acid Structures During Their Functions on Multiple Spatial and Temporal Scales

捕获在多个空间和时间尺度上发挥作用期间的瞬时蛋白质和核酸结构

基本信息

  • 批准号:
    10665090
  • 负责人:
  • 金额:
    $ 35.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Summary/Abstract The long term objective of the proposed research is to develop an integrated instrumentation capable of studying protein/nucleic acid structural dynamics that are relevant to their functions on the time scales from femtosecond to millisecond in order to gain new insight into correlations of active site structures and global conformations of these molecules. Snapshots of solution phase molecular structures over different spatial scales, from sub-Ångström for active sites to several nanometers for overall conformation, will be captured using time-resolved X-ray spectroscopy and scattering. These structural studies will be combined with advanced molecular dynamics simulations that will generate detailed atomistic dynamics consistent with measured scattering profiles over a wide-range of temporal scales from femtosecond to millisecond. The proposed research is complementary to single crystal X-ray diffraction, and intends to map reaction trajectories through three-dimensional structures as a function time in media that mimic biological environments. In order to detect structural changes in an ensemble, reaction triggers must be designed to create sudden environmental changes that synchronize actions of the molecules with much higher time resolution than traditional mixing. The program has three main innovations from previous studies: 1) to develop triggering sources beyond direct light excitation used in the past to initiate reactions to overcome the limitation that very few biological systems related to human health are light activated for their function; 2) to develop novel sample delivery system that reduces the sample consumption by a factor of 100 and enables many precious laboratory samples to be studied using the time-resolved X-ray methods; and 3) to develop a combined approach in data analyses using advanced molecular dynamics simulation coupled to time-dependent X-ray scattering data to extract structures with improved structural accuracy especially for those coexisting species. The above innovation in methodology will allow us to investigate a number of systems that are biologically significant for enzymatic reactions, signal sensing, protein/nucleic acid folding/unfolding as well as lipids phase transitions. Several systems are chosen for the proposed studies to capture transient structures of, a) local metal center and global protein conformations of cytochrome c oxidase model proteins triggered by photodissociation of inhibitors; b) protein folding induced by calcium ion a concentration jump; c) temperature-induced RNA conformational changes sensing signal for translation; d) pH-dependent DNA structures for human oncogene regulation and e) pH-responsive lipid nanocarrier assembly for anticancer drug delivery. These structural results combined with those of reaction kinetics from optical transient spectroscopy will provide guidance for modulating protein and nucleic acid functions via structural modifications, which will lead to impacts in drug design, enzymatic function enhancement, catalysis, as well as theoretical calculations.
摘要/摘要 拟议研究的长期目标是开发一种能够 研究与其在时间尺度上的功能相关的蛋白质/核酸结构动力学 从飞秒到毫秒,以获得对活性位点结构和 这些分子的整体构象不同的溶液相分子结构的快照。 空间尺度,从活性位点的亚埃级到整体构象的几纳米,将是 使用时间分辨X射线光谱和散射捕获这些结构研究将被结合起来。 通过先进的分子动力学模拟,将生成一致的详细原子动力学 在从飞秒到毫秒的广泛时间尺度上测量散射剖面。 拟议的研究是对单晶 X 射线衍射的补充,旨在绘制反应图谱 通过三维结构的轨迹作为模仿生物的媒体中的功能时间 为了检测整体的结构变化,反应触发器必须设计为 产生突然的环境变化,使分子的行为与更长的时间同步 与传统混合相比,该程序具有三个主要创新点:1) 开发超越过去用于引发反应的直接光激发的触发源来克服 与人类健康相关的生物系统很少有光激活其功能的局限性; 2) 开发新型样品输送系统,将样品消耗量减少 100 倍 能够使用时间分辨 X 射线方法研究许多珍贵的实验室样品;3) 使用先进的分子动力学模拟耦合来开发数据分析的组合方法 时间相关的 X 射线散射数据可提取结构,特别是提高结构精度 对于那些共存的物种,上述方法上的创新将使我们能够研究一些。 对酶反应、信号传感、蛋白质/核酸具有生物学意义的系统 折叠/展开以及脂质相变被选择用于拟议的研究。 捕获 a) 细胞色素 c 的局部金属中心和全局蛋白质构象的瞬时结构 抑制剂光解引发的氧化酶模型蛋白 b) 钙诱导的蛋白折叠; c) 温度诱导的RNA构象变化传感信号 翻译;d) 用于人类癌基因调节的 pH 依赖性 DNA 结构和 e) pH 响应脂质 用于抗癌药物递送的纳米载体组装。这些结构结果与反应结果相结合。 光学瞬态光谱动力学将为调节蛋白质和核酸提供指导 通过结构修饰发挥功能,这将影响药物设计、酶功能 增强、催化以及理论计算。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering.
  • DOI:
    10.1021/acs.jpclett.7b01720
  • 发表时间:
    2017-09-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rimmerman D;Leshchev D;Hsu DJ;Hong J;Kosheleva I;Chen LX
  • 通讯作者:
    Chen LX
Revealing Fast Structural Dynamics in pH-Responsive Peptides with Time-Resolved X-ray Scattering.
  • DOI:
    10.1021/acs.jpcb.9b00072
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dolev Rimmerman;Denis Leshchev;Darren J. Hsu;Jiyun Hong;B. Abraham;R. Henning;I. Kosheleva;Lin X. Chen
  • 通讯作者:
    Dolev Rimmerman;Denis Leshchev;Darren J. Hsu;Jiyun Hong;B. Abraham;R. Henning;I. Kosheleva;Lin X. Chen
Probing Cytochrome c Folding Transitions upon Phototriggered Environmental Perturbations Using Time-Resolved X-ray Scattering.
  • DOI:
    10.1021/acs.jpcb.8b03354
  • 发表时间:
    2018-05-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rimmerman D;Leshchev D;Hsu DJ;Hong J;Abraham B;Henning R;Kosheleva I;Chen LX
  • 通讯作者:
    Chen LX
Resolving Dynamics in the Ensemble: Finding Paths through Intermediate States and Disordered Protein Structures.
  • DOI:
    10.1021/acs.jpcb.1c05820
  • 发表时间:
    2021-11-18
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Nijhawan, Adam K.;Chan, Arnold M.;Hsu, Darren J.;Chen, Lin X.;Kohlstedt, Kevin L.
  • 通讯作者:
    Kohlstedt, Kevin L.
Insulin hexamer dissociation dynamics revealed by photoinduced T-jumps and time-resolved X-ray solution scattering.
通过光诱导 T 跃迁和时间分辨 X 射线溶液散射揭示胰岛素六聚体解离动力学。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin X Chen其他文献

Lin X Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin X Chen', 18)}}的其他基金

Capturing Transient Protein and Nucleic Acid Structures During Their Functions on Multiple Spatial and Temporal Scales
捕获在多个空间和时间尺度上发挥作用期间的瞬时蛋白质和核酸结构
  • 批准号:
    10264031
  • 财政年份:
    2015
  • 资助金额:
    $ 35.14万
  • 项目类别:
Capturing Transient Protein Structures on Multiple Spatial and Temporal Scales
在多个空间和时间尺度上捕获瞬态蛋白质结构
  • 批准号:
    9297321
  • 财政年份:
    2015
  • 资助金额:
    $ 35.14万
  • 项目类别:
Capturing Transient Protein and Nucleic Acid Structures During Their Functions on Multiple Spatial and Temporal Scales
捕获在多个空间和时间尺度上发挥作用期间的瞬时蛋白质和核酸结构
  • 批准号:
    10408844
  • 财政年份:
    2015
  • 资助金额:
    $ 35.14万
  • 项目类别:
Capturing Transient Protein Structures on Multiple Spatial and Temporal Scales
在多个空间和时间尺度上捕获瞬态蛋白质结构
  • 批准号:
    8945800
  • 财政年份:
    2015
  • 资助金额:
    $ 35.14万
  • 项目类别:

相似国自然基金

基于VDAC1靶点的光控线粒体自噬纳米诱导剂的构建及其抗肿瘤机制研究
  • 批准号:
    32371436
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向STING激动剂和TREM2抑制剂增强PD-1抑制剂对胰腺癌的抗肿瘤作用研究
  • 批准号:
    82303740
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PWWP域的NSD2蛋白降解剂的设计、合成与抗肿瘤活性研究
  • 批准号:
    22307132
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于阳离子-π相互作用的“开/关”型纳米光敏剂的光敏活性调控及其抗肿瘤研究
  • 批准号:
    82304434
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PROTAC的选择性AKT1降解剂的设计、合成及抗肿瘤活性研究
  • 批准号:
    82304287
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

HER1-3 and Death Receptor protein folding as therapeutic vulnerabilities
HER1-3 和死亡受体蛋白折叠作为治疗漏洞
  • 批准号:
    10721930
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
  • 批准号:
    10697593
  • 财政年份:
    2023
  • 资助金额:
    $ 35.14万
  • 项目类别:
Novel Dearomative Indole Annulation Reactions, Beckmann Fragmentations, and Their Applications to Synthesis
新型脱芳香吲哚成环反应、贝克曼断裂及其在合成中的应用
  • 批准号:
    10501186
  • 财政年份:
    2022
  • 资助金额:
    $ 35.14万
  • 项目类别:
Identification and characterization of chemical probes for interrogation of the NEK family of kinases in cancer
用于研究癌症中 NEK 激酶家族的化学探针的鉴定和表征
  • 批准号:
    10503430
  • 财政年份:
    2022
  • 资助金额:
    $ 35.14万
  • 项目类别:
Structure function investigations of radical transfer and disulfide exchange in a class Ia ribonucleotide reductase
Ia类核糖核苷酸还原酶自由基转移和二硫键交换的结构功能研究
  • 批准号:
    10542661
  • 财政年份:
    2022
  • 资助金额:
    $ 35.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了