Real-time deep learning to improve speech intelligibility in noise
实时深度学习提高噪声中的语音清晰度
基本信息
- 批准号:10558196
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmericanAreaAuditoryCellular PhoneCharacteristicsCochlear ImplantsCommunicationComplexDataDevicesDiagnosisEconomic BurdenEffectivenessEnvironmentEquilibriumEtiologyFacultyFellowshipFloorFoundationsFutureGoalsHealthcareHearingHearing AidsHumanImplantMeasuresMentorsMissionNational Institute on Deafness and Other Communication DisordersNoisePerformancePhasePreventionProcessQuality of lifeRecommendationResearchResearch PersonnelResearch TrainingSchemeSeminalSignal TransductionSpeechSpeech IntelligibilityStrategic PlanningSystemTelephoneTestingTimeTrainingTranslatingUniversitiesVideoconferencingWorkartificial neural networkbasecareercommunication devicedeep learningdeep neural networkdesignexperimental studyhealth economicshearing impairmenthearing loss treatmentimprovedmicrophonenetwork architectureneural networknormal hearingnovelnovel strategiesoperationskillsspeech in noisewearable device
项目摘要
Project Summary/Abstract
One in eight Americans has hearing loss, and this constitutes a major health and economic burden
(Blackwell et al., 2014). The primary complaint of hearing-impaired (HI) listeners is difficulty understanding
speech when background noise is present (see Dillon, 2012). While hearing aids (HAs) have improved in
recent years, they still provide little benefit in noisy environments. For decades, a means of improving the
ability to understand speech in background noise appeared unattainable, despite substantial amounts of
research by both universities and HA companies. This changed when deep learning provided the first
demonstration of a single-microphone algorithm that improves intelligibly in noise for HI listeners (Healy et al.,
2013, 2014, 2015). Although this algorithm provides massive intelligibility improvements (even allowing
listeners to improve intelligibility from floor to ceiling levels), it is currently not implemented to operate in real
time and is therefore not suitable for implementation into HAs and cochlear implants (CIs). What is needed,
therefore, is a highly effective noise-reduction algorithm that is capable of operating in real time. This project
aims to address this critical need.
The long-term goal of the currently proposed project is to alleviate HI listeners’ predominant hearing
handicap, which is difficulty understanding speech in background noise. The first aim introduces a new
algorithm, based on a novel foundational scheme, that is designed to provide substantial benefit for any HI
listener in real time. This algorithm will be well suited for implementation into HAs, CIs, and other face-to-face
communication applications. The effectiveness of this new algorithm will be quantified using both HI and
normal-hearing (NH) listeners. The second aim expands upon this new algorithm by modifying it to accept a
small amount of future time-frame information, which could improve its noise-reduction performance but will
introduce a brief processing delay. The rationale is that different devices have different allowable latencies.
Face-to-face communication devices (HAs, CIs, etc.) have strict low-latency requirements, but other important
communication systems (e.g., telephones) have different requirements. It is possible that the addition of future
time-frame information within these requirements (up to 150 ms) will result in even better speech intelligibility.
But the magnitude of any potential benefit is unknown. This critical information will be established currently.
Using both HI and NH listeners, we will measure intelligibility for noisy sentences that have been processed
using various amounts of future time information.
This comprehensive fellowship training plan will provide individualized, mentored research training from
world-class faculty in a highly supportive and productive environment. The proposed work will endow the
applicant with the skills needed to transition to the next stage of his research career, transform our treatment of
hearing loss, and substantially impact quality of life for millions of Americans.
项目摘要/摘要
八分之一的美国人有听力损失,而这一征兵是重大的健康和经济负担
(Blackwell等,2014年)。
有背景噪声时(见Dillon,2012年)。
近年来,它们在嘈杂的环境中仍然几乎没有好处。
尽管大量数量
大学和HA公司的研究发生了变化。
在HI Liscens的噪声中可以理解的单微粒算法的演示(Health等,
2013年,2014年,2015年)。
听众可以提高从地板到天花板水平的理解力)
因此,不适合将其植入和耳蜗植入(顺式)。
因此,是一种能够实时运行的高效降噪算法。
旨在满足这一关键需求。
当前建议的项目的长期目标是减轻听众的主要听力
障碍,这是差异的理解背景噪声中的语音。
基于一种新颖的基础方案,算法旨在为任何HI提供可观的好处
实时的听众。
通信应用。
正常听力(NH)听众。
少量的将来的时间帧信息可能会降噪的性能,但会
引入简短的处理延迟。
面对面的通信设备(具有,顺式等)具有严格的低延迟要求,但其他重要的
通信系统(例如电话)有不同的要求。
这些需求中的时框信息(最多150毫秒)将带来更好的语音智能手段。
但是,目前将建立任何潜在收益的幅度。
使用HI和NH听众,我们将测量已处理过的嘈杂句子的智能手段
使用各种未来的时间信息。
这个全面的奖学金培训计划将提供来自
世界一流的教师在高度支持和生产的环境中。
申请人具有过渡到其研究职业下一阶段所需的技能,改变了我们的对待
听力损失,并严重影响数百万美国人的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Martin Johnson其他文献
Eric Martin Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Martin Johnson', 18)}}的其他基金
Real-time deep learning to improve speech intelligibility in noise
实时深度学习提高噪声中的语音清晰度
- 批准号:
10268203 - 财政年份:2020
- 资助金额:
$ 0.25万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别: