Digital Detection of Dementia Studies (D cubed Studies).

痴呆症研究的数字检测(D 立方研究)。

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Every year Alzheimer’s disease and related dementias (ADRD) adversely affect millions of Americans at a societal cost of more than $200 million.1 Concurrently, half of Americans living with ADRD never receive a diagnosis.2-7 Early detection helps those with ADRD and their caregivers better plan and potentially lessen the burden of lengthy and costly medical care. Current investigational approaches using biomarkers for early detection are invasive, costly, and sometimes inaccessible to patients. The National Institute on Aging calls for the development of effective, scalable and low cost approaches for early detection of ADRD (RFA-AG-20-051). Currently, primary care clinicians provide the majority of care to older adults living with ADRD.1-5 Our interdisciplinary scientific teams have developed and tested scalable early detection approaches.10, 11 We are proposing to evaluate an integrated approach embedded in the Annual Wellness Visit (AWV) that leverages Electronic Health Record systems, machine learning models, and patient reported outcomes to deploy a low- cost and scalable approach for early detection of ADRD. Our proposed studies will leverage previously developed machine learning models (Passive Digital Marker) and patient reported outcomes (Quick Dementia Rating Scale). The design of our proposed studies is predicated on the notion that patient screening is done to identify a more targeted group of referral for applicable diagnostic and management services. We will conduct two complementary multi-site studies to evaluate the effectiveness of two scalable approaches for early detection of ADRD. The first study will be a clinical validation study of the three scalable approaches; the Passive Digital Marker (PDM) that uses EHR data, the Quick Dementia Rating Scale (QDRS) that uses patient reported outcomes (PROs) imbedded within the EHR system, and the combination of both (PDM + QDRS). The second study will be a pragmatic cluster-randomized controlled comparative effectiveness trial of two screening approaches embedded within the AWV, as compared to the AWV-only process, in increasing the incidence rate of new ADRD. In the final year of the study, we will share our codes for both the Passive Digital Marker and the QDRS with Epic headquarters to ensure that these codes are available for any healthcare system with Epic nationwide. The high costs of treating Alzheimer’s disease and the costs incurred by patients and caregivers, both tangible and intangible, are a major threat to public health and the US economy. Developing scalable and low cost instruments and assessments integrated into EHR data will assist physicians in early detection, more and better diagnoses, and clinically meaningful care recommendations. Cost effective, scalable, and noninvasive models are urgently needed to proactively mitigate these costs and prolonged medical care.
项目摘要/摘要 每年阿尔茨海默氏病和相关痴呆症(ADRD)都会不利影响数百万美国人 社会成本超过2亿美元。1同时,有一半的美国人从未收到过 诊断2-7早期检测可帮助患有ADRD及其护理人员的人更好地计划,并可能更少 冗长且昂贵的医疗保健负担。当前使用生物标志物早期使用生物标志物的研究方法 检测是侵入性的,昂贵的,有时是患者无法访问的。美国国家老化呼吁 早期检测有效,可扩展和低成本方法的发展(RFA-AG-20-051)。 目前,初级保健临床医生为患有ADRD的老年人提供大多数护理。1-5我们 跨学科科学团队已经开发并测试了可扩展的早期检测方法。10,11我们是 提议评估嵌入在年度健康访问(AWV)中的综合方法 电子健康记录系统,机器学习模型和患者报告的结果,以部署低 - 成本和可扩展的ADRD检测方法。我们提出的研究以前将利用 开发的机器学习模型(被动数字标记)和患者报告的结果(快速痴呆 评分量表)。预测我们提出的研究的设计是根据患者筛查进行的观念 为适用的诊断和管理服务确定更具针对性的推荐组。我们将进行 两项完整的多站点研究,以评估两种可扩展方法的早期有效性 检测ADRD。第一项研究将是对三种可扩展方法的临床验证研究。 使用EHR数据的被动数字标记(PDM),使用患者的快速痴呆评级量表(QDRS) 报告的结果(PRO)嵌入了EHR系统中,以及两者的组合(PDM + QDR)。 第二项研究将是两项务实的聚类群集对照比较有效性试验 与仅AWV的过程相比,嵌入在AWV中的筛选方法在增加 新ADRD的发病率。在研究的最后一年,我们将分享被动数字的代码 标记和带有史诗总部的QDR,以确保这些代码可用于任何医疗保健 全国史诗般的系统。 治疗阿尔茨海默氏病以及患者和看护者所产生的成本的高昂成本,都有形 无形的是对公共卫生和美国经济的主要威胁。开发可扩展和低成本 整合到EHR数据中的工具和评估将帮助医生早期检测,更多以及 更好的诊断和临床意义的护理建议。具有成本效益,可扩展性和无创的 迫切需要模型来主动减轻这些成本并延长医疗服务。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feature engineering from medical notes: A case study of dementia detection.
医学笔记的特征工程:痴呆症检测的案例研究。
  • DOI:
    10.1016/j.heliyon.2023.e14636
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    BenMiled,Zina;Dexter,PaulR;Grout,RandallW;Boustani,Malaz
  • 通讯作者:
    Boustani,Malaz
共 1 条
  • 1
前往

MALAZ BOUSTANI的其他基金

I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10505463
    10505463
  • 财政年份:
    2022
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10416631
    10416631
  • 财政年份:
    2022
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10893170
    10893170
  • 财政年份:
    2022
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
The Agile Nudge University Program
敏捷助推大学计划
  • 批准号:
    10677700
    10677700
  • 财政年份:
    2022
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10649684
    10649684
  • 财政年份:
    2022
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10812844
    10812844
  • 财政年份:
    2022
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10685354
    10685354
  • 财政年份:
    2022
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
  • 批准号:
    10092237
    10092237
  • 财政年份:
    2020
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
  • 批准号:
    10417225
    10417225
  • 财政年份:
    2020
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
  • 批准号:
    10266121
    10266121
  • 财政年份:
    2020
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 87.82万
    $ 87.82万
  • 项目类别: