Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
基本信息
- 批准号:10532757
- 负责人:
- 金额:$ 21.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffinityAlzheimer&aposs DiseaseBenchmarkingBindingBinding SitesBrainBrain DiseasesCatecholaminesChemicalsCommunicationComplementDataDetectionDevelopmentDiffusionDopamineEnsureEnvironmentEnzymesExtracellular SpaceFrequenciesFutureGlutamate ReceptorGlutamatesGoalsHippocampusIn VitroLabelLengthLongevityMeasurementMeasuresMental disordersMethodsMicrodialysisMicroelectrodesModelingMolecularMolecular ConformationMonitorMorphologyNeurofibrillary TanglesNeuronsNeurotransmittersOutcomeOxidation-ReductionParkinson DiseasePathway interactionsPerformancePeriodicityPhysiologic pulsePhysiologicalPolymersProcessPublic HealthReaction TimeReporterResearchResolutionSamplingScanningSerotoninShapesSignal TransductionSliceSpecificitySpectrum AnalysisStimulusSynapsesSynaptic CleftSystemTechniquesTechnologyTimeTransducersValidationWorkaptamerautism spectrum disorderbrain tissueclinical applicationcopolymerdesigndetection limitelectric impedanceextracellularferroceneimprovedin vivoin vivo monitoringliquid chromatography mass spectrometrymillisecondmonomermouse modelnervous system disorderneurochemistrynovelnovel strategiespatch clamppolymerizationreal time monitoringreceptorreceptor bindingsensorsensor technologysuccesstechnology platformtemporal measurementuptake
项目摘要
PROJECT SUMMARY / ABSTRACT
There is a great demand for a new sensing technology that can monitor neurochemicals in brain continuously in
real-time with high temporal resolution. While electrochemical detection of electroactive neurotransmitters (such
as dopamine and serotonin) have been successful using high frequency voltammetric methods (such as fast-
scan cyclic voltammetry), measurement of non-electroactive species (such as glutamate) still remain a great
challenge for achieving real-time monitoring with high time resolution. The goal of this project is to implement a
new electrochemical sensing platform that can monitor glutamate, a well-known non-electroactive
neurotransmitter, with physiologically relevant detection range and high temporal resolution. The proposed
sensing approach can serve as an alternative to enzymatic sensing or microdialysis which have some limitations
with respect to time resolution and stability. Motivated in part by the aptamer-based electrochemical sensors,
the proposed sensing mechanism utilizes a novel synthetic target receptor as both a target recognition unit and
a signal transducer. The glutamate receptor is formed by a single-chain stimuli-responsive templated polymer
that binds specifically to its template molecule, namely, glutamate. Furthermore, upon selective target
recognition, the polymer undergoes conformation change (from linear to folded shape). This change in polymer
morphology can be electrochemically detected through the use of a redox reporter (such as ferrocene) attached
to the polymer. For validation of the proposed sensing approach, the developed sensor will be compared against
two well-established methods, a patch clamp and a microdialysis technique. A patch clamp system is ideal for
measuring fast dynamics (milliseconds) of chemical exchange at the synaptic cleft of the neurons, however,
lacks chemical specificity. A microdialysis in conjunction with liquid chromatography and mass spectrometry
provides exceptional chemical specificity, however, the temporal resolution is poor (on the order of minutes). It
is expected that the developed sensor platform will be able to bridge the gap between these two existing methods
and to provide versatility in sensing performances. The goals of this project will be achieved by pursuing the
following specific aims: (1) optimization of the templated polymer-based glutamate receptor to meet the desired
performance metrics; and (2) validation of the developed glutamate sensor in a physiological environment. The
successful outcome of this project will be the development of a new general platform technology for detection of
neurochemicals in real-time with a time resolution that is sufficient for studying synaptic communications as well
as for monitoring chemicals in the extracellular regions in the brain tissue.
项目摘要 /摘要
对新的传感技术的需求很大,该技术可以连续监测大脑中的神经化学物
实时具有高时间分辨率。而电化学神经递质的电化学检测(此类
由于多巴胺和5-羟色胺)已经成功地使用了高频伏安法(例如快速 -
扫描循环伏安法),非电动活性物种(例如谷氨酸)的测量仍然很棒
通过高时间分辨率实现实时监控的挑战。该项目的目的是实施
可以监测谷氨酸的新的电化学传感平台,谷氨酸是一种众所周知的非电动活性
神经递质,具有生理相关的检测范围和高时间分辨率。提议
传感方法可以作为具有局限性的酶传感或微透析的替代方法
关于时间分辨率和稳定性。基于适体的电化学传感器的部分动机,
提出的感应机制利用新型的合成靶受体作为目标识别单元,又
信号传感器。谷氨酸受体是由单链刺激反应模板聚合物形成的
这特别结合其模板分子,即谷氨酸。此外,选择性目标
识别,聚合物经历构象变化(从线性到折叠形状)。聚合物的这种变化
可以通过使用附着的氧化还原记者(例如二瓜)来电化学检测形态
到聚合物。为了验证提出的传感方法,将将开发的传感器与
两种完善的方法,一种贴片夹和一种微透析技术。贴片夹系统是理想的选择
但是,测量神经元突触裂口的化学交换的快速动力学(毫秒)
缺乏化学特异性。与液相色谱和质谱法结合的微透析
提供出色的化学特异性,但是,时间分辨率很差(在几分钟内)。它
期望开发的传感器平台能够弥合这两种现有方法之间的差距
并提供多功能性传感性能。该项目的目标将通过追求
以下特定目的:(1)优化模板的聚合物基谷氨酸受体以满足所需的
性能指标; (2)在生理环境中验证发达的谷氨酸传感器。这
该项目的成功结果将是开发一种新的通用平台技术来检测
实时的神经化学品和时间分辨率也足以研究突触通信
至于监测脑组织细胞外区域的化学物质。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous Real-Time Detection of Serotonin Using an Aptamer-Based Electrochemical Biosensor.
- DOI:10.3390/bios13110983
- 发表时间:2023-11-13
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Song其他文献
Edward Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Song', 18)}}的其他基金
Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
- 批准号:
10195790 - 财政年份:2021
- 资助金额:
$ 21.92万 - 项目类别:
Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
- 批准号:
10374895 - 财政年份:2021
- 资助金额:
$ 21.92万 - 项目类别:
Implantable sensor array for in vivo, real-time monitoring of multiple neurotransmitters
用于体内多种神经递质实时监测的植入式传感器阵列
- 批准号:
9211725 - 财政年份:2017
- 资助金额:
$ 21.92万 - 项目类别:
相似国自然基金
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
S-腺苷同型半胱氨酸抑制METTL3调控m6A/miRNA-NCOA4轴致椎间盘退变的机制研究
- 批准号:82372444
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于肝脏腺苷A1受体调控的PKA-SCAP-SREBP1c通路研究知母皂苷AⅢ治疗NAFLD的分子机理
- 批准号:82374129
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PUF60通过调控SET可变多聚腺苷酸化参与DNA损伤修复促进卵巢癌耐药的机制
- 批准号:82303055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 21.92万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10641934 - 财政年份:2022
- 资助金额:
$ 21.92万 - 项目类别:
Turning Mycobacterium tuberculosis appetite for fatty acids against itself
结核分枝杆菌对脂肪酸的需求与自身相悖
- 批准号:
10592602 - 财政年份:2022
- 资助金额:
$ 21.92万 - 项目类别:
Integrative genomic analysis of adenosine-to-inosine editing in Alzheimer's disease
阿尔茨海默病中腺苷至肌苷编辑的综合基因组分析
- 批准号:
10572263 - 财政年份:2022
- 资助金额:
$ 21.92万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10540084 - 财政年份:2022
- 资助金额:
$ 21.92万 - 项目类别: