Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
基本信息
- 批准号:10195790
- 负责人:
- 金额:$ 17.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffinityAlzheimer&aposs DiseaseBenchmarkingBindingBinding SitesBrainBrain DiseasesCatecholaminesChemicalsCommunicationComplementDataDetectionDevelopmentDiffusionDopamineEnsureEnvironmentEnzymesExtracellular SpaceFoundationsFrequenciesFutureGlutamate ReceptorGlutamatesGoalsHippocampus (Brain)In VitroLabelLengthLongevityMeasurementMeasuresMental disordersMethodsMicrodialysisMicroelectrodesModelingMolecularMolecular ConformationMonitorMorphologyNeurofibrillary TanglesNeuronsNeurotransmittersOutcomeOxidation-ReductionParkinson DiseasePathway interactionsPerformancePeriodicityPhysiologic pulsePhysiologicalPolymersProcessPublic HealthReaction TimeReporterResearchResolutionSamplingScanningSerotoninShapesSignal TransductionSliceSpecificitySpectrum AnalysisStimulusSynapsesSynaptic CleftSystemTechniquesTechnologyTimeTransducersValidationWorkaptamerautism spectrum disorderbasebrain tissueclinical applicationcopolymerdesigndetection limitelectric impedanceextracellularferroceneimprovedin vivoin vivo monitoringliquid chromatography mass spectrometrymillisecondmonomermouse modelnervous system disorderneurochemistrynovelnovel strategiespatch clamppolymerizationreal time monitoringreceptorreceptor bindingsensorsensor technologysuccesstemporal measurementuptake
项目摘要
PROJECT SUMMARY / ABSTRACT
There is a great demand for a new sensing technology that can monitor neurochemicals in brain continuously in
real-time with high temporal resolution. While electrochemical detection of electroactive neurotransmitters (such
as dopamine and serotonin) have been successful using high frequency voltammetric methods (such as fast-
scan cyclic voltammetry), measurement of non-electroactive species (such as glutamate) still remain a great
challenge for achieving real-time monitoring with high time resolution. The goal of this project is to implement a
new electrochemical sensing platform that can monitor glutamate, a well-known non-electroactive
neurotransmitter, with physiologically relevant detection range and high temporal resolution. The proposed
sensing approach can serve as an alternative to enzymatic sensing or microdialysis which have some limitations
with respect to time resolution and stability. Motivated in part by the aptamer-based electrochemical sensors,
the proposed sensing mechanism utilizes a novel synthetic target receptor as both a target recognition unit and
a signal transducer. The glutamate receptor is formed by a single-chain stimuli-responsive templated polymer
that binds specifically to its template molecule, namely, glutamate. Furthermore, upon selective target
recognition, the polymer undergoes conformation change (from linear to folded shape). This change in polymer
morphology can be electrochemically detected through the use of a redox reporter (such as ferrocene) attached
to the polymer. For validation of the proposed sensing approach, the developed sensor will be compared against
two well-established methods, a patch clamp and a microdialysis technique. A patch clamp system is ideal for
measuring fast dynamics (milliseconds) of chemical exchange at the synaptic cleft of the neurons, however,
lacks chemical specificity. A microdialysis in conjunction with liquid chromatography and mass spectrometry
provides exceptional chemical specificity, however, the temporal resolution is poor (on the order of minutes). It
is expected that the developed sensor platform will be able to bridge the gap between these two existing methods
and to provide versatility in sensing performances. The goals of this project will be achieved by pursuing the
following specific aims: (1) optimization of the templated polymer-based glutamate receptor to meet the desired
performance metrics; and (2) validation of the developed glutamate sensor in a physiological environment. The
successful outcome of this project will be the development of a new general platform technology for detection of
neurochemicals in real-time with a time resolution that is sufficient for studying synaptic communications as well
as for monitoring chemicals in the extracellular regions in the brain tissue.
项目概要/摘要
人们迫切需要一种能够连续监测大脑中神经化学物质的新型传感技术。
实时且具有高时间分辨率。虽然电化学检测电活性神经递质(例如
如多巴胺和血清素)已成功使用高频伏安法(例如快速伏安法)
扫描循环伏安法),非电活性物质(例如谷氨酸)的测量仍然很重要
实现高时间分辨率实时监控的挑战。该项目的目标是实施
新的电化学传感平台可以监测谷氨酸,一种众所周知的非电活性物质
神经递质,具有生理相关的检测范围和高时间分辨率。拟议的
传感方法可以作为酶传感或微透析的替代方法,但有一些局限性
关于时间分辨率和稳定性。部分受到基于适配体的电化学传感器的推动,
所提出的传感机制利用新型合成目标受体作为目标识别单元和
信号传感器。谷氨酸受体由单链刺激响应模板聚合物形成
特异性结合其模板分子,即谷氨酸。此外,根据选择性目标
识别后,聚合物会发生构象变化(从线性到折叠形状)。聚合物的这种变化
形态可以通过使用附加的氧化还原报告剂(例如二茂铁)进行电化学检测
到聚合物。为了验证所提出的传感方法,开发的传感器将与
两种行之有效的方法,膜片钳和微透析技术。膜片钳系统非常适合
然而,测量神经元突触间隙化学交换的快速动态(毫秒),
缺乏化学特异性。微透析与液相色谱和质谱联用
提供了特殊的化学特异性,但是时间分辨率很差(大约分钟)。它
预计开发的传感器平台将能够弥补这两种现有方法之间的差距
并提供传感性能的多功能性。该项目的目标将通过追求
具体目标如下:(1)优化基于模板聚合物的谷氨酸受体以满足期望的
绩效指标; (2)在生理环境中验证所开发的谷氨酸传感器。这
该项目的成功成果将是开发一种新的通用平台技术来检测
实时神经化学物质的时间分辨率也足以研究突触通讯
至于监测脑组织细胞外区域的化学物质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Song其他文献
Edward Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Song', 18)}}的其他基金
Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
- 批准号:
10532757 - 财政年份:2021
- 资助金额:
$ 17.96万 - 项目类别:
Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
- 批准号:
10374895 - 财政年份:2021
- 资助金额:
$ 17.96万 - 项目类别:
Implantable sensor array for in vivo, real-time monitoring of multiple neurotransmitters
用于体内多种神经递质实时监测的植入式传感器阵列
- 批准号:
9211725 - 财政年份:2017
- 资助金额:
$ 17.96万 - 项目类别:
相似国自然基金
N6-甲基腺苷(m6A)修饰的LINC00673通过调节SRSF3稳定性促进乳腺癌转移和化疗耐药的机制研究
- 批准号:82303500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全新单磷酸腺苷化修饰催化结构域S-HxxxE的发现及在病原菌感染中的作用
- 批准号:32370185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
去腺苷酸化酶CNOT6L抑制结肠炎癌转化中CD8+T细胞功能的分子机制及其靶标属性探讨
- 批准号:82304557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N6-甲基腺苷修饰的circ_0048766参与三阴性乳腺癌生长转移和免疫逃逸的功能及其机制研究
- 批准号:82360468
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中性粒细胞凋亡囊泡通过ENPP1-NT5E-腺苷通路调节炎症反应促进口腔黏膜再生的机制研究
- 批准号:82301099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10641934 - 财政年份:2022
- 资助金额:
$ 17.96万 - 项目类别:
Turning Mycobacterium tuberculosis appetite for fatty acids against itself
结核分枝杆菌对脂肪酸的需求与自身相悖
- 批准号:
10592602 - 财政年份:2022
- 资助金额:
$ 17.96万 - 项目类别:
Integrative genomic analysis of adenosine-to-inosine editing in Alzheimer's disease
阿尔茨海默病中腺苷至肌苷编辑的综合基因组分析
- 批准号:
10572263 - 财政年份:2022
- 资助金额:
$ 17.96万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10540084 - 财政年份:2022
- 资助金额:
$ 17.96万 - 项目类别: