Deformable motion compensation for 3D image-guided interventional radiology
用于 3D 图像引导介入放射学的可变形运动补偿
基本信息
- 批准号:10531910
- 负责人:
- 金额:$ 36.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY / ABSTRACT
C-arm cone-beam CT (CBCT) plays an increasing role in guidance of interventional radiology (IR) procedures in the abdo-
men, with special emphasis in embolization procedures, such as transarterial chemoembolization (TACE) for treatment of
hepatocellular carcinoma (HCC) or transarterial embolization (TAE) for control of internal hemorrhage. However, relatively
long scan time of CBCT results in artifacts arising from organ motion (respiratory and cardiac motion and peristalsis). This
poses a significant challenge to guidance in interventional radiology: for example, motion artifacts were found to render
up to 25% of CBCT images un-interpretable in image-guided TACE, and 18% in CBCT-guided emergency TAE. The impact
of motion is most significant in cases of single or isolated lesions treated with selective embolization that requires visual-
ization of very small vascular structures. Existing motion correction methods often invoke assumption of periodicity, lim-
iting their applicability outside of cardiac and respiratory motions, or rely on fiducial tracking or gated acquisition that
disrupt IR workflow and/or increase radiation dose. Therefore, the application of CBCT in image-guided interventional
procedures in the abdomen would significantly benefit from new methods that estimate complex deformable motion
directly from image data. “Autofocus” techniques based on maximization of a regularized image sharpness criterion were
shown to yield effective patient motion compensation in extremity, head and cardiac CBCT. However, current applications
of such methods are limited to rigid motions. We hypothesize that deformable organ motion compensation in interven-
tional soft-tissue CBCT can be achieved with advanced autofocus techniques using multiple locally rigid regions of in-
terest, preconditioned with basic motion characteristics obtained through a machine learning decision framework. The
following aims will be pursued: 1) Develop a joint multi-region autofocus optimization method to compensate deforma-
ble organ motion. This includes incorporation into a comprehensive artifacts correction and image reconstruction pipe-
line, design of multi-stage optimization schedules for convergence acceleration, and performance evaluation in deforma-
ble phantoms, and cadaver and animal experiments. 2) Develop a decision framework for preconditioning of the motion
compensation method through a combination of projection-based approaches for physiological signal estimations (res-
piratory cycle) and a multi-input, multi-branch, deep learning architecture trained on extremely realistic simulated data
that will estimate basic properties of motion (spatial distribution of amplitude, direction, and frequency) from an initial
motion-contaminated image and its associated raw projection data. 3) Evaluate deformable motion compensation in
animal experiments and in a clinical study in 50 cases of CBCT-guided TACE and assess image quality via expert observer
evaluation of satisfaction and utility. The proposed work will yield a robust, practical method for compensation of deform-
able soft-tissue motion in CBCT, removing a critical impediment to 3D guidance in IR. The deformable autofocus frame-
work will be applicable to other interventions in which soft-tissue motion diminishes CBCT guidance, such as image-guided
radiation therapy.
项目摘要 /摘要
C-ARM锥束CT(CBCT)在ABDO中的介入放射学(IR)过程中起着越来越多的作用
男性,特别重点是栓塞程序,例如跨细胞化学栓塞(TACE)用于治疗
用于控制内部出血的肝细胞癌(HCC)或跨性栓塞(TAE)。但是,相对
CBCT的长时间扫描时间会导致器官运动(呼吸和心脏运动以及蠕动)引起的伪影。这
对介入放射学的指导构成了重大挑战:例如,发现运动伪像呈现
在图像引导的TACE中,最多可介入的CBCT图像中有25%,在CBCT引导的紧急TAE中最多可介入18%。影响
在用选择性栓塞处理的单个或孤立水平的情况下,运动的最重要
非常小的血管结构的融合。现有的运动校正方法通常会引用周期性的假设,lim-
在心脏和呼吸动作之外,或依靠基准跟踪或封闭式收购,将其适用
破坏IR工作流和/或增加辐射剂量。因此,CBCT在图像引导的介入中的应用
腹部中的程序将大大受益于估计复杂变形运动的新方法
直接来自图像数据。基于正则图像清晰度标准的最大化的“自动对焦”技术是
显示可在肢体,头部和心脏CBCT中获得有效的患者运动补偿。但是,当前的应用程序
这种方法仅限于严格的运动。我们假设在间隔中进行可变形的器官运动补偿 -
使用高级自动对焦技术可以使用多个本地刚性区域来实现Tional软组织CBCT
Terest,预先通过机器学习决策框架获得的基本运动特征进行预处理。这
将追求以下目标:1)开发一种联合多区域自动对焦优化方法来补偿变形 -
BLE器官运动。这包括纳入全面的人工制品校正和图像重建管 -
线路,用于收敛加速度的多阶段优化时间表的设计,以及变形的性能评估
幻象,尸体和动物实验。 2)制定一个决策框架以预处理运动
通过基于投影的方法组合进行物理信号估计的组合(res-
火灾周期)和对极其逼真的模拟数据培训的多输入,多分支,深度学习的体系结构
这将估算运动的基本特性(放大器的空间分布,方向和频率)
运动污染图像及其相关的原始投影数据。 3)评估可变形运动补偿
在50例CBCT指导TACE和评估图像质量的临床研究中,动物实验和通过专家观察者进行了
评估满意度和实用性。拟议的工作将产生一种可靠的,实用的方法来补偿变形 -
CBCT可能会软组织运动,从而消除了IR中3D指导的严重障碍。可变形的自动对焦帧 -
工作将适用于软组织运动减少CBCT指导的其他干预措施,例如图像引导
放射治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Alejandro Sisnieg...的其他基金
Deformable motion compensation for 3D image-guided interventional radiology
用于 3D 图像引导介入放射学的可变形运动补偿
- 批准号:1037618210376182
- 财政年份:2021
- 资助金额:$ 36.84万$ 36.84万
- 项目类别:
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABCC2转运蛋白在克氏原螯虾腹部肌肉中抗汞积累特性研究
- 批准号:32302982
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Pediatric volumetric ultrasound scanner
儿科体积超声扫描仪
- 批准号:1073941110739411
- 财政年份:2023
- 资助金额:$ 36.84万$ 36.84万
- 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:1070735410707354
- 财政年份:2022
- 资助金额:$ 36.84万$ 36.84万
- 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:1052257010522570
- 财政年份:2022
- 资助金额:$ 36.84万$ 36.84万
- 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:1089325810893258
- 财政年份:2022
- 资助金额:$ 36.84万$ 36.84万
- 项目类别:
Development of a Multi-scale closed loop model for hemorrhagic shock: a platform to assess REBOA performance
失血性休克多尺度闭环模型的开发:评估 REBOA 性能的平台
- 批准号:1066964410669644
- 财政年份:2022
- 资助金额:$ 36.84万$ 36.84万
- 项目类别: