The role of nitrogen metabolism in smooth muscle cell phenotypic plasticity
氮代谢在平滑肌细胞表型可塑性中的作用
基本信息
- 批准号:10535170
- 负责人:
- 金额:$ 3.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-19 至 2025-12-18
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAlgorithmsAntihypertensive AgentsArteriesAtherosclerosisAutomobile DrivingBayesian NetworkBindingBiologicalBiological AssayBiologyBlood VesselsCause of DeathCell Culture TechniquesCell ProliferationComplexCoronary ArteriosclerosisCoronary arteryDataDiagnosisDiseaseDisease susceptibilityDonor personEndothelial CellsGene ExpressionGenesGeneticGenetic TranscriptionGoalsHeart TransplantationHeritabilityHomeostasisHumanLeadLentivirusLinkLipidsMeasuresMedialMetabolic PathwayMetabolic dysfunctionMetabolismMolecularMyocardial InfarctionNOS3 geneNitric OxideNitric Oxide SynthaseNitrogenPathologicPathway AnalysisPathway interactionsPharmaceutical PreparationsPhenotypePlayProcessProductionRecombinantsRegulator GenesRiskRisk FactorsRoleSeriesSignal PathwaySmooth Muscle MyocytesStimulusTestingTimeTranscriptUnited StatesVariantVascular Endothelial Growth Factor CVascular Smooth Muscleascending aortabiomarker identificationcell typedifferential expressiondisorder preventiondisorder riskexperimental studygain of functiongene interactiongene networkgenome wide association studyknock-downliquid chromatography mass spectrometryloss of functionmacrophagemetabolomicsmigrationmonocytemortalitymulti-ethnicnetwork architecturenew therapeutic targetnitrogen metabolismnovel therapeutic interventionnovel therapeuticsosteogenicoverexpressionparticlepreservationprogramsresponsestatisticstranscription factortranscriptome sequencing
项目摘要
Coronary artery is the leading cause of death in the US. While lipid-lowering and anti-hypertensive drugs have
helped decrease CAD-related mortality by approximately 50% since the 1980s, these therapies only modify
CAD risk factors. To date, no approved drug acts at the vascular wall directly against atherosclerosis, the
underlying cause of CAD. One opportunity to develop novel therapies is through genetics: CAD is partially
heritable, and recent genome-wide association studies identified over 200 loci associated with elevated risk for
CAD. While 40% of these CAD loci having established associations with known risk factors, the molecular and
cellular mechanisms of the remaining 60% of the CAD loci are unknown. The majority of these unknown loci
are predicted to function by regulating gene expression in the vascular wall where the disease develops.
Vascular smooth muscle cells (SMCs), which make up the medial layer of arteries, play a critical role in the
progression of atherosclerosis, the precursor to coronary artery disease. During initiation and progression of
atherosclerosis, SMCs transdifferentiate from a quiescent (healthy) phenotype to a proliferative (pathological)
phenotype representative of myogenic, osteochondrogenic, and macrophage-like phenotypes that contribute to
plaque build-up. Identifying the molecular mechanisms driving SMC phenotypic plasticity will open up new
avenues of treatment for CAD. Preservation analysis of co-expression networks from RNAseq data generated
from the ascending aortas of 151 multi-ethnic smooth muscle cell donors cultured in quiescent and proliferative
conditions, respectively, revealed phenotype-specific network architecture enriched for nitrogen metabolic
processes. Previous studies have shown that metabolic pathways are not only involved in phenotypic changes
of other cell types in the vascular wall, but also have the capability to drive them. Therefore, the goal of this
proposal is to characterize the role nitrogen metabolism plays in SMC phenotypic plasticity and identify the key
regulatory genes driving dysregulation. The project will address this problem through 2 aims. In aim 1, I will
characterize the role nitrogen metabolism plays in SMCs during the progression of atherosclerosis using a
combined approach of metabolomics, cell type marker identification, and cellular phenotyping assays in
response to activation or silencing of the nitrogen metabolism pathway. In aim 2, I will create Bayesian
networks (BNs) of genes involved in nitrogen metabolic processes using gene expression data and
transcription factor-gene expression relationships generated from time-series experiments linking differentially
expressed ATACseq peaks and differentially expressed RNAseq peaks in response to pro-atherogenic
stimulus. I will then identify the key driver genes (KDs) of nitrogen metabolic pathways whose expression
regulates the changes across the gene expression networks. Gain-of-function and loss-of-function experiments
for KDs in SMCs using lentiviral particles will be completed with cellular phenotyping assays to quantify the
impact on SMC proliferation, migration, and de-differentiation.
冠状动脉是美国死亡的主要原因。降低脂质和抗高血压药的虽然
自1980年代以来,与CAD相关的死亡率降低了约50%,这些疗法仅修改
CAD风险因素。迄今为止,尚无直接针对动脉粥样硬化的血管壁的批准药物作用,
CAD的根本原因。开发新疗法的一个机会是通过遗传学:CAD部分是
可遗传的,最近的全基因组关联研究确定了200多个基因座,与较高的风险相关
卡德。这些CAD基因座中有40%已经建立了与已知危险因素的关联,但分子和
其余60%的CAD基因座的细胞机制尚不清楚。这些未知基因座的大多数
预测通过调节疾病发展的血管壁中的基因表达来起作用。
构成动脉内侧的血管平滑肌细胞(SMC),在
动脉粥样硬化的进展,冠状动脉疾病的前体。在开始和进步期间
动脉粥样硬化,SMCS从静止(健康)表型转变为增生(病理)
代表肌原性,骨软骨和巨噬细胞样表型的表型,有助于
牌匾积聚。确定驱动SMC表型可塑性的分子机制将开放新的
CAD治疗途径。从RNASEQ数据生成的共表达网络的保存分析
从151个多种族平滑肌细胞供体的上升主动脉,以静止和增生性培养
分别揭示了富含氮代谢的表型特异性网络结构
过程。先前的研究表明,代谢途径不仅参与表型变化
血管壁中的其他细胞类型,但也有能力驱动它们。因此,目标的目标
建议是表征氮代谢在SMC表型可塑性中的作用并确定关键
调节基因驱动失调。该项目将通过2个目标解决这个问题。在AIM 1中,我会
表征氮代谢在动脉粥样硬化过程中使用A的作用在SMC中的作用
代谢组学,细胞类型标记鉴定和细胞表型测定法的联合方法
对氮代谢途径激活或沉默的反应。在AIM 2中,我将创建贝叶斯
使用基因表达数据和参与氮代谢过程的基因网络(BN)
转录因子 - 基因的表达关系是由时间序列实验产生的,链接差异
表达的Atacseq峰和差异表达的RNASEQ峰响应于促动脉粥样硬化
刺激。然后,我将识别氮代谢途径的关键驱动基因(KD)
调节基因表达网络之间的变化。功能障碍和功能丧失实验
对于使用慢病毒颗粒的SMC中的KD
对SMC增殖,迁移和脱不同的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Noah Perry其他文献
Robert Noah Perry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 3.82万 - 项目类别:
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
- 批准号:
10776871 - 财政年份:2023
- 资助金额:
$ 3.82万 - 项目类别: