Thinking about walking: Can digital phenotyping of mobility improve the prediction of Alzheimer's dementia and inform on the pathologies and proteins contributing to this association?
思考步行:移动的数字表型可以改善阿尔茨海默氏痴呆症的预测并提供有关导致这种关联的病理学和蛋白质的信息吗?
基本信息
- 批准号:10524888
- 负责人:
- 金额:$ 58.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAddressAdultAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAreaAttentionBiological MarkersBrain PathologyBrain regionCessation of lifeCognitionCognitiveComplementComplexDataDementiaDiseaseEarly Onset Alzheimer DiseaseElderlyGaitImpaired cognitionImpairmentIndividualLeadMeasuresMemoryMotorMovementParticipantPathologicPathologyPhenotypePrefrontal CortexPreventionProteinsProteomePublic HealthResearchResourcesRiskRoleSamplingSet proteinSubgroupTestingThinkingWalkingWorkWristbaseclinical carecognitive abilitycognitive testingdigitalexecutive functionimprovedimproved mobilityindexingmotor impairmentnovelpre-clinicalpreventsensor
项目摘要
ABSTRACT
In its earliest stage Alzheimer’s disease does not manifest cognitive impairment while dementia is a late
manifestation. A biomarker to identify preclinical Alzheimer’s dementia is crucial for treatments aimed at its
prevention. Alzheimer’s disease can also degrade non-cognitive functions like mobility that precedes and
predicts cognitive impairment in many older adults. To use mobility as a biomarker, it is crucial to identify the
metrics that best predict Alzheimer’s dementia and the mechanisms that account for this association.
We must think to move. Mobility requires motor and cognitive abilities that derive from distinct brain regions.
This may explain why mobility is an early predictor of dementia. Yet, motor testing usually only quantifies
movement duration. So, the role of cognitive abilities in the association of mobility with Alzheimer’s dementia is
unclear. Unobtrusive sensors can be used to assess cognitive and motor metrics crucial for mobility.
This study will use novel digital mobility phenotyping to improve the prediction of Alzheimer’s disease
dementia and identify brain pathologies and proteins that inform on this association.
This study responds to NOT-AG-20-053 and will add new resources to those available from 1000 older adults
in the Rush Memory and Aging Project (R01AG17917). To improve the prediction of Alzheimer’s dementia, we
will add cognitive mobility metrics e.g., motor planning and attentional metrics to a single-testing session. To
capture the varied cognitive demands during everyday mobility, we will also add new multi-day mobility metrics
obtained from a wrist sensor. Motor planning is related to supplementary motor area (SMA) and task attention
and executive function are regulated by dorsolateral prefrontal cortex (DLPFC). So, we focus on these regions
to identify mechanisms shared by mobility and Alzheimer’s disease dementia. In 200 decedents with available
brain pathologies, we will collect new proteome data from SMA to complement the available DLPFC proteome.
Aim 1 will add new digital cognitive mobility metrics to motor metrics obtained from a single-testing session as
well as novel multi-day mobility metrics to improve the prediction of Alzheimer’s dementia. Sensors yield large
numbers of mobility metrics. Aim 1 will isolate individual metrics that predict Alzheimer’s dementia. Aim 2 will
analyze these novel metrics with a second approach to identify different mobility subgroups that may have
varied risks of Alzheimer’s dementia. To inform on the mechanisms underlying the association of mobility and
Alzheimer’s dementia, Aim 3 will use brain pathologies to determine the pathologic bases for these mobility
subgroups. Aim 4 will collect proteome from SMA and DLPFC to identify cortical proteins independently
related to mobility subgroups when controlling for ADRD pathologies. From the set of proteins related to
mobility, we will identify a subset that are also related to Alzheimer’s dementia. This study will inform on why
mobility predicts Alzheimer’s dementia and optimize its use as a biomarker for preclinical Alzheimer’s disease.
Targeting the proteins identified may catalyze new treatments for both immobility and Alzheimer’s dementia.
抽象的
在最早的阿尔茨海默氏病,痴呆症是一个晚期的认知障碍
表现形式。
预防。
预测许多老年人的认知障碍。
最能预测阿尔茨海默氏症的痴呆症的指标和解释这种关联的机制。
我们必须考虑移动。
这可能解释了为什么痴呆的早期预测因子。
运动持续时间。
不引人注目的传感器可用于评估流动性的认知和运动指标。
这项研究将使用新颖的数字移动表型来改善阿尔茨海默氏病的预测
痴呆并确定有关关联信息的脑病理和蛋白质。
这项研究对NOT-20-053做出了响应,并将针对1000名老年人的可用
在Rush Memory和老化项目中(R01AG17917)。
将添加认知流动性指标,例如,电动机计划和正式指标
捕获日常出行期间的认知需求,我们还将添加新的多日移动指标
从腕部传感器获得的电动机策划与推导运动区域(SMA)有关
和执行功能由背面的前额叶皮层(DLPFC)调节。
确定流动性和阿尔茨海默氏病痴呆症的机制。
大脑病理,我们将收集从SMA到CompFC蛋白质组的新蛋白质组数据。
AIM 1将为单个测试会话获得的运动指标添加新的数字认知流动性指标
以及新型的多日移动性指标,以改善阿尔茨海默氏症的痴呆症的预测
AIM 1的移动性指标将隔离预测阿尔茨海默氏症的单个指标
用第二种方法分析这些THEL指标,以识别可能具有的不同移动性亚组
阿尔茨海默氏症的痴呆症风险各异。
阿尔茨海默氏症的痴呆症,AIM 3将使用脑病理学来确定TESE活动性的病理基础
亚组。AIM4将从SMA和DLPFC收集蛋白质组,以独立识别皮质蛋白
与移动性亚组相关时,从与蛋白质相关的蛋白质中
流动性,我们将确定一个子集与阿尔茨海默氏症的痴呆症有关。
流动性可以预测阿尔茨海默氏症的痴呆症,并优化其作为临床前阿尔茨海默氏病的生物标志物的使用。
靶向鉴定的蛋白质可能会催化新的治疗方法,以促进新疗法和阿尔茨海默氏症的痴呆症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARON S BUCHMAN其他文献
ARON S BUCHMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARON S BUCHMAN', 18)}}的其他基金
Identifying resilience proteins in key motor tissues that drive motor and cognitive decline and offset the negative effects of ADRD pathologies within and outside the brain
识别关键运动组织中的弹性蛋白,这些蛋白会导致运动和认知能力下降,并抵消大脑内外 ADRD 病理的负面影响
- 批准号:
10599328 - 财政年份:2022
- 资助金额:
$ 58.27万 - 项目类别:
Identifying resilience proteins in key motor tissues that drive motor and cognitive decline and offset the negative effects of ADRD pathologies within and outside the brain
识别关键运动组织中的弹性蛋白,这些蛋白会导致运动和认知能力下降,并抵消大脑内外 ADRD 病理的负面影响
- 批准号:
10369971 - 财政年份:2022
- 资助金额:
$ 58.27万 - 项目类别:
Thinking about walking: Can digital phenotyping of mobility improve the prediction of Alzheimer's dementia and inform on the pathologies and proteins contributing to this association?
思考步行:移动的数字表型可以改善阿尔茨海默氏痴呆症的预测并提供有关导致这种关联的病理学和蛋白质的信息吗?
- 批准号:
10710174 - 财政年份:2022
- 资助金额:
$ 58.27万 - 项目类别:
Establishing Sleep Apnea as a non-cognitive phenotype of brainstem ADRD pathologies in older adults
将睡眠呼吸暂停确定为老年人脑干 ADRD 病理的非认知表型
- 批准号:
10378737 - 财政年份:2021
- 资助金额:
$ 58.27万 - 项目类别:
Establishing Sleep Apnea as a non-cognitive phenotype of brainstem ADRD pathologies in older adults
将睡眠呼吸暂停确定为老年人脑干 ADRD 病理的非认知表型
- 批准号:
10602556 - 财政年份:2021
- 资助金额:
$ 58.27万 - 项目类别:
Establishing Sleep Apnea as a non-cognitive phenotype of brainstem ADRD pathologies in older adults
将睡眠呼吸暂停确定为老年人脑干 ADRD 病理的非认知表型
- 批准号:
10178701 - 财政年份:2021
- 资助金额:
$ 58.27万 - 项目类别:
Elucidating the molecular drivers of impaired mobility within and outside the CNS in Alzheimer’s disease and related disorders
阐明阿尔茨海默病及相关疾病中枢神经系统内外活动能力受损的分子驱动因素
- 批准号:
10613427 - 财政年份:2019
- 资助金额:
$ 58.27万 - 项目类别:
Elucidating the molecular drivers of impaired mobility within and outside the CNS in Alzheimer’s disease and related disorders
阐明阿尔茨海默病及相关疾病中枢神经系统内外活动能力受损的分子驱动因素
- 批准号:
9920077 - 财政年份:2019
- 资助金额:
$ 58.27万 - 项目类别:
Elucidating the molecular drivers of impaired mobility within and outside the CNS in Alzheimer’s disease and related disorders
阐明阿尔茨海默病及相关疾病中枢神经系统内外活动能力受损的分子驱动因素
- 批准号:
10374874 - 财政年份:2019
- 资助金额:
$ 58.27万 - 项目类别:
Impaired Gait in Older Adults: Pathologies of Alzheimer's disease and Related Disorders
老年人步态受损:阿尔茨海默病及相关疾病的病理学
- 批准号:
9889016 - 财政年份:2017
- 资助金额:
$ 58.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
- 批准号:
10722938 - 财政年份:2023
- 资助金额:
$ 58.27万 - 项目类别:
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 58.27万 - 项目类别:
Utility and feasibility of activity type to augment consumer wearable-based physical activity energy expenditure prediction equations using heartrate and movement in children
使用儿童心率和运动来增强基于消费者可穿戴设备的身体活动能量消耗预测方程的活动类型的实用性和可行性
- 批准号:
10677143 - 财政年份:2023
- 资助金额:
$ 58.27万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 58.27万 - 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 58.27万 - 项目类别: