Clinical & biological signatures of post-traumatic neurodegeneration: Leveraging the TBI Model Systems of Care to accelerate in vivo diagnosis of the late effects of TBI (LETBI)
临床
基本信息
- 批准号:10524430
- 负责人:
- 金额:$ 500.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAgeAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmyloid beta-42AutopsyBiologicalBiological MarkersBiological ModelsBloodCategoriesCharacteristicsChronicClinicalClinical MarkersCodeCognitionCognitiveCohort StudiesCommon Data ElementCommunitiesComplexControl GroupsCraniocerebral TraumaDataData CollectionDatabasesDementiaDiagnosisDiagnosticDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionEnrollmentEnsureEnvironmentEnvironmental Risk FactorFailureFundingGlial Fibrillary Acidic ProteinImageImpairmentIndividualInflammationInfrastructureInjuryInvestigationLate EffectsLifeLife Cycle StagesLightLiquid substanceLongevityLongitudinal StudiesLongitudinal prospective studyLongterm Follow-upMeasuresMedicalMethodologyMethodsMolecularNerve DegenerationNeurodegenerative DisordersOutcomeParticipantPathologicPathologyPatient Self-ReportPatientsPersonsPopulationPositioning AttributePrevalenceProteinsPsychometricsPublic HealthRecording of previous eventsReportingResearch PersonnelRiskRisk FactorsSamplingScientistSeveritiesStatistical MethodsSurvivorsSymptomsSyndromeTechnologyTelephoneTestingTimeTissuesTraumatic Brain InjuryUnited States National Institutes of HealthValidationVisitaxon injurybasecandidate markercare systemschronic traumatic encephalopathyclinical phenotypecohortdata resourcedementia riskdesignearly life adversityearly life exposureepidemiology studyfollow-upimaging biomarkerin vivoindexingindividual variationmagnetic resonance imaging biomarkermixed dementiamotor behaviormultimodal datamultimodalityneurobehavioralneurofilamentneuroimagingneuropathologynovelprogressive neurodegenerationprospectiverecruitresilienceresponsesingle moleculetau Proteinstherapy developmenttooltrauma exposure
项目摘要
Project Summary/Abstract
This R01 Proposal, “Clinical & biological signatures of post-traumatic neurodegeneration: Leveraging the TBI
Model Systems of Care to accelerate in vivo diagnosis of the late effects of TBI (LETBI)” is submitted in
response to PAR-22-024, which requests investigation into the clinical and biological features that distinguish
chronic static effects of traumatic brain injury (csTBI) from those associated with progressive post-traumatic
neurodegeneration (PTND). This will require longitudinal, multimodal data from a well-characterized diverse
cohort of TBI survivors. The LETBI study is a prospective longitudinal study with multimodal clinical
characterization and autopsy endpoints designed to characterize the neuropathology of TBI and its in vivo
clinical signatures. LETBI participants were recruited from ongoing longitudinal studies including the TBI Model
Systems which ensures excellent TBI characterization and extensive longitudinal data. Here, we propose to
follow the original LETBI cohort, and expand to include 4 additional TBI Model Systems centers. By recruiting
individuals with a history of well-characterized moderate-severe TBI who are at least 5 years post-TBI, we will
study a cohort of individuals at risk for decline, with multimodal LETBI follow-up visits conducted at 2-3 year
intervals. We will apply advanced psychometric and statistical methods to consider life course exposures that
elevate risk for Alzheimer’s disease (AD) and AD-related dementias (ADRDs), novel neuroimaging processing
tools, ultra-sensitive single molecule array (Simoa) technology, and state-of-the-art neuropathology methods in
a LETBI cohort enhanced by expanded recruitment from a total of 6 TBI Model System centers. We will
leverage existing data collected via telephone in the TBI Model System National Database to characterize
clinical course from the time of injury to LETBI enrollment. In Aim 1 we will use existing TBIMS and newly
collected LETBI data to identify individuals who have declined from a previously achieved post-injury level of
function (i.e., PTND) to determine injury characteristics and lifetime head trauma exposure thresholds associated
with domain-specific PTND risk and traumatic encephalopathy syndrome (TES) risk, beyond index injury severity.
In Aim 2 we will apply advanced causal inference methods to quantify early life environment and isolate the
contribution of exposures other than TBI to PTND and AD/ADRD risk. In Aim 3 we will define the underlying
pathology(s) of PTND by identifying in vivo fluid (NfL, GFAP, T-tau, pTau, Aβ42/40) and imaging (network-
specific connectivity changes per diffusion MRI (dMRI)) biomarkers of PTND. In Aim 4 we will seek
postmortem validation of these in vivo biomarkers in the LETBI autopsy cohort, identifying their postmortem
tissue correlates and burden of neurodegenerative disease including CTE across injury exposure and TES
diagnostic groups. Our strong transdisciplinary team is ideally positioned to define the risk factors, clinical, and
biological signatures of PTND, thereby identifying tools for diagnosis and disease progression while creating
rich data resources to share with the scientific community to accelerate AD/ADRD treatment development.
项目概要/摘要
R01 提案“创伤后神经变性的临床和生物学特征:利用 TBI
加速 TBI 迟发效应体内诊断的护理模型系统 (LETBI)”提交于
对 PAR-22-024 的回应,要求调查区分的临床和生物学特征
与进行性创伤后相关的创伤性脑损伤(csTBI)的慢性静态效应
这将需要来自充分表征的多样化的纵向多模态数据。
TBI 幸存者队列是一项多模式临床前瞻性纵向研究。
旨在表征 TBI 及其体内神经病理学特征的表征和尸检终点
LETBI 参与者是从正在进行的纵向研究(包括 TBI 模型)中招募的。
系统可确保出色的 TBI 表征和广泛的纵向数据。
遵循最初的 LETBI 队列,并通过招募扩大到包括 4 个额外的 TBI 模型系统中心。
对于具有明确的中度至重度 TBI 病史且 TBI 发生后至少 5 年的个体,我们将
研究一组有衰退风险的个体,并在 2-3 年进行多模式 LETBI 随访
我们将应用先进的心理测量和统计方法来考虑生命历程中的暴露情况。
增加阿尔茨海默病 (AD) 和 AD 相关痴呆 (ADRD) 的风险,新型神经影像处理
工具、超灵敏单分子阵列 (Simoa) 技术和最先进的神经病理学方法
我们将通过从总共 6 个 TBI 模型系统中心扩大招募来增强 LETBI 队列。
利用 TBI 模型系统国家数据库中通过电话收集的现有数据来表征
从受伤时到 LETBI 登记的临床过程在目标 1 中,我们将使用现有的 TBIMS 和新的 TBIMS。
收集 LETBI 数据来识别那些从之前达到的伤后水平下降的个人
功能(即 PTND)确定损伤特征和相关的终生头部外伤暴露阈值
具有特定领域的 PTND 风险和创伤性脑病综合征 (TES) 风险,超出指标损伤严重程度。
在目标 2 中,我们将应用先进的因果推理方法来量化早期生活环境并隔离
TBI 以外的暴露对 PTND 和 AD/ADRD 风险的贡献 在目标 3 中,我们将定义基础风险。
通过识别体内液体(NfL、GFAP、T-tau、pTau、Aβ42/40)和成像(网络-
在目标 4 中,我们将寻找 PTND 的每个扩散 MRI (dMRI) 生物标志物的特定连接变化。
在 LETBI 尸检队列中对这些体内生物标志物进行尸检验证,识别其尸检结果
神经退行性疾病的组织相关性和负担,包括跨损伤暴露的 CTE 和 TES
我们强大的跨学科团队非常适合定义风险因素、临床和诊断。
PTND 的生物学特征,从而确定诊断和疾病进展的工具,同时创建
丰富的数据资源与科学界共享,加速AD/ADRD治疗的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristen Dams-O'Connor其他文献
Kristen Dams-O'Connor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristen Dams-O'Connor', 18)}}的其他基金
Leveraging Existing Aging Research Networks to investigate TBI and AD/ADRD risk (LEARN TBI & AD)
利用现有的老龄化研究网络来调查 TBI 和 AD/ADRD 风险(了解 TBI
- 批准号:
10064985 - 财政年份:2019
- 资助金额:
$ 500.57万 - 项目类别:
Leveraging Existing Aging Research Networks to investigate TBI and AD/ADRD risk (LEARN TBI & AD)
利用现有的老龄化研究网络来调查 TBI 和 AD/ADRD 风险(了解 TBI
- 批准号:
10709201 - 财政年份:2019
- 资助金额:
$ 500.57万 - 项目类别:
Leveraging Existing Aging Research Networks to investigate TBI and AD/ADRD risk (LEARN TBI & AD)
利用现有的老龄化研究网络来调查 TBI 和 AD/ADRD 风险(了解 TBI
- 批准号:
10533343 - 财政年份:2019
- 资助金额:
$ 500.57万 - 项目类别:
Leveraging Existing Aging Research Networks to investigate TBI and AD/ADRD risk (LEARN TBI & AD)
利用现有的老龄化研究网络来调查 TBI 和 AD/ADRD 风险(了解 TBI
- 批准号:
10341092 - 财政年份:2019
- 资助金额:
$ 500.57万 - 项目类别:
Leveraging Existing Aging Research Networks to investigate TBI and AD/ADRD risk (LEARN TBI & AD)
利用现有的老龄化研究网络来调查 TBI 和 AD/ADRD 风险(了解 TBI
- 批准号:
9891932 - 财政年份:2019
- 资助金额:
$ 500.57万 - 项目类别:
Clinical & biological signatures of post-traumatic neurodegeneration: Toward in vivo diagnosis of the late effects of TBI.
临床
- 批准号:
9914761 - 财政年份:2019
- 资助金额:
$ 500.57万 - 项目类别:
Neuropathology of CTE and Delayed Effects of TBI: Toward In-Vivo Diagnostics
CTE 的神经病理学和 TBI 的延迟效应:走向体内诊断
- 批准号:
9212693 - 财政年份:2014
- 资助金额:
$ 500.57万 - 项目类别:
Comprehensive Investigation of the Clinical Course of Traumatic Brain Injury
脑外伤临床病程的综合探讨
- 批准号:
8958717 - 财政年份:2013
- 资助金额:
$ 500.57万 - 项目类别:
Comprehensive Investigation of the Clinical Course of Traumatic Brain Injury
脑外伤临床过程的综合调查
- 批准号:
8785130 - 财政年份:2013
- 资助金额:
$ 500.57万 - 项目类别:
Comprehensive Investigation of the Clinical Course of Traumatic Brain Injury
脑外伤临床过程的综合调查
- 批准号:
8633829 - 财政年份:2013
- 资助金额:
$ 500.57万 - 项目类别:
相似国自然基金
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 500.57万 - 项目类别:
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 500.57万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 500.57万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 500.57万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 500.57万 - 项目类别: