Signaling and Targeting of 6-Phosphogluconate Dehydrogenase in Human Cancers
人类癌症中 6-磷酸葡萄糖酸脱氢酶的信号传导和靶向
基本信息
- 批准号:8838743
- 负责人:
- 金额:$ 32.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-15 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinase6-phosphogluconateAcetyl-CoA CarboxylaseAcetylationAnabolismAttenuatedB-Cell Acute Lymphoblastic LeukemiaBackBindingBioenergeticsBone Marrow TransplantationCancer cell lineCell ProliferationCell SurvivalCellsCervical Intraepithelial NeoplasiaClinical TreatmentColorectal CancerComplexDNA biosynthesisDataDevelopmentEnzymesEvaluationH1299HealthHomeostasisHumanIn VitroK-562LaboratoriesLinkLysineMalignant NeoplasmsMalignant neoplasm of lungMetabolicMetabolic PathwayMetabolismModelingMusNADPNormal CellNucleotide BiosynthesisNude MiceOxidation-ReductionPathogenesisPathway interactionsPatientsPentosephosphate PathwayPharmaceutical PreparationsPhosphogluconate DehydrogenasePhosphorylationPhosphorylation InhibitionProductionProtein Kinase InhibitorsRNARNA biosynthesisReducing AgentsRegulationReportingResistanceRoleSTK11 geneSignal TransductionSignaling MoleculeTestingTissuesToxic effectXenograft procedurebasecancer cellin vivoinhibitor/antagonistleukemialipid biosynthesismimeticsmutantnext generationnovelprotein kinase inhibitorribulose 5-phosphatesmall hairpin RNAsmall moleculetherapeutic targetthyroid neoplasmtumortumor growthtumor metabolism
项目摘要
DESCRIPTION (provided by applicant): How cancer cells coordinate anabolic biosynthesis and redox homeostasis remains largely unknown. In normal cells, 6-phosphogluconate dehydrogenase (6PGD), an enzyme in the oxidative pentose phosphate pathway (PPP), converts 6-phosphogluconate (6-PG) to ribulose 5-phosphate (Ru-5-P) and produces NADPH. Upregulated 6PGD activity has been reported in several cancer tissues including colorectal cancers, cervical intraepithelial neoplasia and thyroid tumors, as well as leukemia (our unpublished data). However, how 6PGD is activated in human cancers and whether 6PGD activity is important in pathogenesis and tumor development remain unknown. We found that acetylation at K76 and K294 enhances 6PGD activation and is commonly observed in diverse human cancer cells. Stable knockdown of 6PGD in cancer cells results in reduced oxidative PPP flux and RNA/DNA biosynthesis. Surprisingly, 6PGD knockdown also causes decreased NADPH/NADP+ ratio, suggesting an important role for 6PGD in NADPH production that cannot be compensated by other NADPH-producing enzymes. Moreover, cancer cells with 6PGD knockdown show elevated ROS levels and aberrant biosynthesis, leading to reduced cell proliferation and tumor growth in xenograft nude mice. We next screened and identified Physcion as a novel, selective small molecule 6PGD inhibitor. Treatment with Physcion or its derivative S3 effectively inhibits cell proliferation in diverse human cancer cells with no off-taret effect. Physcion and S3 also effectively inhibit cell viability and proliferation of primary leukema cells from human patients with minimal toxicity. Furthermore, S3 significantly reduces tumor growth in xenograft nude mice subcutaneously injected with human H1299 lung cancer or K562 leukemia cells with minimal toxicity in vivo. Thus, we hypothesize that lysine acetylation enhances 6PGD activation, which promotes cancer cell proliferation and tumor growth; 6PGD thus represents a novel anti-cancer target in clinical treatment. Intriguingly, we also found that knockdown of 6PGD results in decreased intracellular levels of Ru-5-P (6PGD product), leading to activation of AMP-activated protein kinase (AMPK), which subsequently inhibits acetyl-CoA carboxylase 1 (ACC1) and consequently lipogenesis. Thus, in addition to the well-established connection between PPP and nucleotide biosynthesis, 6PGD provides a novel link between PPP, AMPK signaling and lipogenesis, which, along with the surprisingly crucial role for 6PGD in NADPH production and redox homeostasis, is important for cancer metabolism and tumor growth. We will test these hypotheses using human lung cancer and leukemias (CML, AML and B-ALL) as platforms. Three Specific Aims were proposed (1) To examine whether lysine acetylation is important for 6PGD activation and promotion of cancer cell metabolism and tumor growth; (2) To explore how 6PGD links PPP, AMPK signaling and lipogenesis to coordinate with redox regulation in promoting cancer cell metabolism and tumor growth; and (3) To validate 6PGD as an anti-leukemia target in treatment of human leukemia cells in vitro and in vivo using 6PGD small molecule inhibitors developed in our laboratory.
描述(由申请人提供):癌细胞如何协调合成代谢生物合成和氧化还原稳态仍然很大程度上未知。在正常细胞中,6-磷酸葡萄糖酸脱氢酶 (6PGD)(氧化戊糖磷酸途径 (PPP) 中的一种酶)将 6-磷酸葡萄糖酸 (6-PG) 转化为 5-磷酸核酮糖 (Ru-5-P) 并产生 NADPH。据报道,多种癌症组织中 6PGD 活性上调,包括结直肠癌、宫颈上皮内瘤变和甲状腺肿瘤以及白血病(我们未发表的数据)。然而,6PGD 在人类癌症中如何被激活以及 6PGD 活性在发病机制和肿瘤发展中是否重要仍不清楚。我们发现 K76 和 K294 处的乙酰化可增强 6PGD 激活,并且在多种人类癌细胞中常见。癌细胞中 6PGD 的稳定敲低会导致氧化 PPP 通量和 RNA/DNA 生物合成减少。令人惊讶的是,6PGD 敲低还会导致 NADPH/NADP+ 比率降低,这表明 6PGD 在 NADPH 产生中发挥着重要作用,而其他 NADPH 产生酶无法弥补这一作用。此外,6PGD敲低的癌细胞表现出ROS水平升高和生物合成异常,导致异种移植裸鼠中的细胞增殖和肿瘤生长减少。接下来我们筛选并鉴定大黄素甲醚是一种新型选择性小分子 6PGD 抑制剂。大黄素甲醚或其衍生物 S3 处理可有效抑制多种人类癌细胞的细胞增殖,且无偏离塔塔效应。大黄素甲醚和 S3 还能有效抑制人类患者原发性白血病细胞的细胞活力和增殖,且毒性极小。此外,S3可显着减少皮下注射人H1299肺癌或K562白血病细胞的异种移植裸鼠的肿瘤生长,且体内毒性极小。因此,我们假设赖氨酸乙酰化增强了 6PGD 的激活,从而促进癌细胞增殖和肿瘤生长;因此,6PGD代表了临床治疗中的一个新的抗癌靶点。有趣的是,我们还发现 6PGD 的敲除会导致细胞内 Ru-5-P(6PGD 产物)水平降低,从而导致 AMP 激活蛋白激酶 (AMPK) 的激活,随后抑制乙酰辅酶 A 羧化酶 1 (ACC1) 和因此脂肪生成。因此,除了 PPP 和核苷酸生物合成之间已建立的联系之外,6PGD 还提供了 PPP、AMPK 信号传导和脂肪生成之间的新联系,这与 6PGD 在 NADPH 产生和氧化还原稳态中令人惊讶的关键作用一起,对于癌症非常重要代谢和肿瘤生长。我们将使用人类肺癌和白血病(CML、AML 和 B-ALL)作为平台来测试这些假设。提出了三个具体目标(1)研究赖氨酸乙酰化对于6PGD激活以及促进癌细胞代谢和肿瘤生长是否重要; (2)探讨6PGD如何连接PPP、AMPK信号和脂肪生成,协调氧化还原调节,促进癌细胞代谢和肿瘤生长; (3) 使用我们实验室开发的6PGD小分子抑制剂在体外和体内验证6PGD作为抗白血病靶点治疗人类白血病细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Chen其他文献
Complex Dynamics in Predator-prey Models with Nonmonotonic Functional Response and Harvesting
具有非单调功能响应和收获的捕食者-被捕食者模型中的复杂动力学
- DOI:
10.1051/mmnp/20138507 - 发表时间:
2013 - 期刊:
- 影响因子:2.2
- 作者:
Jicai Huang;Jing Chen;Yijun Gong;Weipeng Zhang - 通讯作者:
Weipeng Zhang
Porous nanocubic Mn3O4–Co3O4 composites and their application as electrochemical supercapacitors†
多孔纳米立方Mn3O4
- DOI:
10.1371/journal.pone.0140110 - 发表时间:
2012 - 期刊:
- 影响因子:4
- 作者:
Huan Pang;Jiawei Li;Jimin Du;Sujuan Li;Juan LI;Yahui Ma;Jiangshan Zhang;Jing Chen - 通讯作者:
Jing Chen
Jing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Chen', 18)}}的其他基金
The role of EMT transcription factor Zeb2 in fetal hematopoiesis
EMT转录因子Zeb2在胎儿造血中的作用
- 批准号:
10604587 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Dietary trans-vaccenic acid enhances anti-tumor immunity
膳食反式牛油酸增强抗肿瘤免疫力
- 批准号:
10562449 - 财政年份:2022
- 资助金额:
$ 32.96万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK
氧化戊糖磷酸途径调节 AMPK
- 批准号:
10381359 - 财政年份:2021
- 资助金额:
$ 32.96万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10237345 - 财政年份:2020
- 资助金额:
$ 32.96万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10471262 - 财政年份:2020
- 资助金额:
$ 32.96万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10028816 - 财政年份:2020
- 资助金额:
$ 32.96万 - 项目类别:
Signaling and Targeting of 6-Phosphogluconate Dehydrogenase in Human Cancers
人类癌症中 6-磷酸葡萄糖酸脱氢酶的信号传导和靶向
- 批准号:
8630691 - 财政年份:2014
- 资助金额:
$ 32.96万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10524081 - 财政年份:2014
- 资助金额:
$ 32.96万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10580662 - 财政年份:2014
- 资助金额:
$ 32.96万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10738318 - 财政年份:2014
- 资助金额:
$ 32.96万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
AMPK通过Wnt/β-catenin信号通路调控绵羊肌内脂肪前体细胞分化的研究
- 批准号:31402053
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Metabolic Reprogramming by Interferon-gamma in Coronary Artery Disease
干扰素γ在冠状动脉疾病中的内皮代谢重编程
- 批准号:
10662850 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Elucidating the Trophic Support of Long Axons by Metabolic Signaling in Oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
- 批准号:
10782630 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别: