Systems Analysis of Cardiac Chromatin Structure
心脏染色质结构的系统分析
基本信息
- 批准号:8516092
- 负责人:
- 金额:$ 36.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-24 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectBinding SitesBiological ModelsCardiacCardiac MyocytesCardiovascular DiseasesCell NucleusCell SizeCell SurvivalCellsChIP-seqChromatinChromatin ModelingChromatin StructureClinicalComplexCpG IslandsDNA SequenceDNA Sequence RearrangementDNA-Directed RNA PolymeraseDataDevelopmentDimensionsDiseaseEmbryoEnhancersEnvironmentEnzymesEventExonsFamilyFamily memberFigs - dietaryFishesFluorescent in Situ HybridizationFutureGene ActivationGene ExpressionGene Expression ProcessGenerationsGenesGenomeGenomicsGoalsGrantHMGB ProteinsHealthHeartHeart DiseasesHeart failureHigher Order Chromatin StructureHistone H1Histone H1(s)HistonesHumanImageIndividualInjuryIntercistronic RegionInterphaseIntronsLengthLinker DNAMeasurementMicroscopyMitosisMorphologyMusMuscle CellsNucleosomesPhenotypePlayPost-Translational Protein ProcessingProcessProtein BindingProtein FamilyProtein IsoformsProteinsProteomicsPublishingRegulationResolutionRoleSPT6 ProteinSiteSmall Interfering RNASpecificityStimulusStructureSystemSystems AnalysisTestingVariantVertebral columnWorkZebrafishbasechromatin immunoprecipitationchromatin remodelingfetalgenome-widein vivoinsightinterestknock-downloss of functionmouse developmentmouse modelnovelpressureresponsescreeningtext searchingtranscription factor
项目摘要
DESCRIPTION (provided by applicant): What the interphase genome looks like in vivo is unknown. Advances in sequencing over the last decade have provided new insight into sequence variants (and their expression); yet how the genome is organized in three dimensions, apart from the well-described machinations of mitosis, is only beginning to be understood. Adult cardiac myocytes reside primarily in interphase but are capable of large-scale changes in gene expression. Transcription factors, histone modifying enzymes and RNA polymerase complexes play a central role in the process of global gene expression; however, an equally important and less explored factor is endogenous chromatin structure. To be transcribed, a gene's local environment must be accessible for protein binding. The objective of this grant is to understand how this phenomenon is integrated on a genome- wide scale: how is the genome appropriately poised to have the right genes on and off under basal conditions, and what are the mechanisms that globally reorganize chromatin following a stimulus (e.g. during disease)? Heart failure involves large-scale gene expression changes, including reactivation of genes normally silenced during development. Our data from an in vivo mouse model of pressure overload show alterations in abundance and localization of chromatin structural proteins from the linker histone H1 and high mobility group (HMG) B families, and indicate that heart failure is associated with global reprogramming of the chromatin environment for gene activation. We seek to discover universal principles for how HMGs and linker histones control bulk chromatin rearrangement and global gene expression; therefore, we will employ zebrafish, isolated myocytes and mouse hearts as model systems. Our unifying hypothesis is that global reorganization of chromatin structure during heart failure is the result of systematic changes in the abundance, genomic localization, and protein interactions among chromatin structural proteins. We will examine how linker histones and HMGs establish the higher order structure of the genome in the cardiac nucleus and how they dynamically repackage chromatin in disease. We will use gain/loss-of-function approaches combined with super resolution STED microscopy (image chromatin packing), chromatin immunoprecipitation and DNA sequencing (localize proteins across the genome) and proteomics (determine proteins necessary for targeting). Our short-term goal is to understand the role of HMGs and linker histones in cardiac phenotype. The long-term goal is to develop an understanding of how HMGs, linker histones and other chromatin structural proteins coordinate genomic structure to facilitate specificity in gene expression. The significance in the basic realm is to develop an integrated model of chromatin packing. The significance to the clinical realm is to provide a mechanistic basis for how the genome is reprogrammed with disease, such that future therapies can target specific chromatin remodeling events.
描述(由申请人提供):体内的相间基因组的外观未知。在过去十年中,测序的进步为序列变体(及其表达)提供了新的见解。然而,除了描述的有丝分裂的阴谋性外,基因组是如何在三个维度上组织的,才刚刚开始被理解。成年心肌细胞主要存在于相间,但基因表达的大规模变化。转录因子,修饰酶的组蛋白和RNA聚合酶复合物在全球基因表达过程中起着核心作用。但是,同样重要且较少的因素是内源性染色质结构。要转录,必须可以访问基因的局部环境以进行蛋白质结合。这笔赠款的目的是了解这种现象是如何在基因组中整合的:基因组如何适当地在基础条件下和关闭基础条件下正确的基因,以及在刺激后全球重组染色质的机制是什么? 心力衰竭涉及大规模的基因表达变化,包括在发育过程中通常沉默的基因重新激活。我们来自压力过载的体内小鼠模型的数据显示,从接头组蛋白H1和高迁移率组(HMG)B家族的染色质结构蛋白的定位变化,并表明心力衰竭与基因激活的染色质环境的全球重编程有关。我们试图发现HMG和接头组蛋白如何控制大量染色质重排和全球基因表达的普遍原理;因此,我们将采用斑马鱼,孤立的肌细胞和小鼠心脏作为模型系统。 我们统一的假设是,心力衰竭期间染色质结构的全球重组是染色质结构蛋白之间丰度,基因组定位和蛋白质相互作用的系统变化的结果。我们将研究如何在心脏核中建立基因组的高阶结构以及它们如何在疾病中动态重新包装染色质。我们将使用功能/功能丧失方法以及超级分辨率STED显微镜(图像染色质填料),染色质免疫沉淀和DNA测序(遍布基因组的蛋白质)和蛋白质组学(确定靶标所需的蛋白质)。我们的短期目标是了解HMG和接头组蛋白在心脏表型中的作用。长期目标是对HMG,接头组蛋白和其他染色质结构蛋白坐标基因组结构的理解,以促进基因表达中的特异性。基本领域的重要性是开发染色质填料的集成模型。对临床领域的意义是为如何用疾病重编程基因组提供机械基础,以便未来的疗法可以针对特定的染色质重塑事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas M. Vondriska其他文献
A35. Prevention of pore-formation by voltage-dependent anion channel protects against mitochondrial dysfunction and cell death
- DOI:
10.1016/j.yjmcc.2006.03.423 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:
- 作者:
Jun Zhang;Thomas M. Vondriska;David A. Liem;Shushi Nagamori;Jeff Abramson;Guangwu Wang;Rachna Ujwal;Chenggong Zong;Michael J. Zhang;James N. Weiss;Ronald H. Kaback;Peipei Ping - 通讯作者:
Peipei Ping
Thomas M. Vondriska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas M. Vondriska', 18)}}的其他基金
Epigenomic basis of resilience to heart failure
心力衰竭恢复能力的表观基因组基础
- 批准号:
10090629 - 财政年份:2020
- 资助金额:
$ 36.65万 - 项目类别:
Novel Mechanisms of LncRNA Mediated Epigenetic Regulation in Cardiac Hypertrophy
LncRNA介导的表观遗传调控心脏肥大的新机制
- 批准号:
10202707 - 财政年份:2018
- 资助金额:
$ 36.65万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Visinin-like protein-1 modulation of nicotinic receptors
Visinin 样蛋白-1 烟碱受体的调节
- 批准号:
10712709 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别: