Duke Autism Center of Excellence: A translational digital health and computational approach to early identification, outcome monitoring, and biomarker discovery in autism
杜克大学自闭症卓越中心:用于自闭症早期识别、结果监测和生物标志物发现的转化数字健康和计算方法
基本信息
- 批准号:10523403
- 负责人:
- 金额:$ 241.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:6 year oldAddressAgeAge-MonthsAutomated Clinical Decision SupportBase of the BrainBehaviorBiological MarkersBirthBlue CrossBlue ShieldBrainCaregiversCaringChildChild BehaviorClinicClinicalClinical TrialsCodeCollaborationsComputer Vision SystemsComputing MethodologiesDataData AnalysesData ScienceData SetDevelopmentDevicesDiagnosisDiscriminationEarly identificationElectronic Health RecordElementsEngineeringFactor AnalysisFamilyFutureGoalsHealth Services AccessibilityHealth systemHomeInfantIntellectual functioning disabilityInterventionLanguageMachine LearningMeasuresMedicaidMedicalMethodsMonitorNatural Language ProcessingNatureNeurosciencesNorth CarolinaOutcomeOutcome MeasureParent-Child RelationsParticipantPathway AnalysisPatternPediatricsPhasePhenotypePopulationPopulation HeterogeneityPredictive ValuePrevalencePrimary Health CareProviderPsychiatryPsychologyQuality of lifeQuestionnairesResearchScreening procedureStratificationTestingToddlerUniversitiesVisionautism spectrum disorderautisticautistic childrenbasebehavioral outcomebiomarker discoverycare providersclinical careclinical decision supportcomputer sciencedata managementdesigndigitaldigital healthgastrointestinalhealth dataimplementation scienceimprovedindexinginnovationinsightliteracymachine learning methodmembermultimodalityneglectneural networknovelnovel strategiesoutreachprediction algorithmpredictive modelingracial and ethnicrecruitrelating to nervous systemscreeningsexsocial attentionsuccesssupport toolstoolusability
项目摘要
ABSTRACT – Overall
The overall goal of the Duke Autism Center of Excellence is to use an innovative, translational digital health and
computational approach to address the critical need for more effective autism screening tools, objective outcome
measures, and brain-based biomarkers that can be used in clinical trials with young autistic children. An
Administrative Core, Dissemination and Outreach Core, and Data Management and Analysis Core will support
three Projects. Project 1 will recruit a large population of 16- to 30-month-old toddlers through primary care clinics
to evaluate the accuracy of a remotely administered novel digital phenotyping application (app) for detecting
early signs of autism. The app automatically quantifies observations of children’s behavior using computer vision
analysis and is deployed on widely available devices. The usability of the app for longitudinal outcome monitoring
will be assessed at 16-30, 36, and 48 months of age. The feasibility of using computer vision analysis to measure
patterns of caregiver-child interactions from videos recorded at home will be explored. Project 2 will develop a
complementary autism screening approach by using North Carolina Medicaid and Blue Cross Blue Shield claims
data (N ~ 230,000, autism cases ~6,000) to create a generalizable autism prediction model based on routine
health data collected from birth to 18 months. Then, using Duke University Health System electronic health
records (EHR; N ~ 64,000, autism cases ~ 800), this Project will use natural language processing to assess the
added predictive value of EHR elements not captured in claims data (e.g., clinician notes). Both data sets will be
leveraged to gain insight into the nature and prevalence of medical conditions in infants and toddlers who are
later diagnosed with autism. Projects 1 and 2 will collaboratively engage primary care providers and other
stakeholders to design an automated clinical decision support tool for autism screening that, in the future, could
be integrated into the primary care provider’s clinical workflow. Project 3 will use an innovative machine learning
computational method to develop a multimodal biomarker that combines features of electroencephalographic
(EEG) activity and synchronized measures of children’s behavior (e.g., social attention) automatically coded via
computer vision analysis, with a focus on neural connectivity measured via traditional methods (coherence,
phase-lag index) and novel neural network analysis methods (discriminative cross-spectral factor analysis)
developed by our team. This multimodal approach will be evaluated in 3–6-year-old autistic children without
intellectual disability (ID), age- and sex-matched neurotypical children, and autistic children with ID (IQ <= 70).
Across Projects, our Center’s team will share cutting-edge computational methods to develop new tools that can
address long-standing barriers to optimal care and enhanced quality of life for autistic children and their families.
摘要 – 总体
杜克大学自闭症卓越中心的总体目标是利用创新的、转化性的数字健康和
计算方法可满足对更有效的自闭症筛查工具、客观结果的迫切需求
措施以及可用于自闭症儿童临床试验的基于大脑的生物标志物。
行政核心、传播和外展核心以及数据管理和分析核心将支持
三个项目。项目 1 将通过初级保健诊所招募大量 16 至 30 个月大的幼儿。
评估远程管理的新型数字表型分析应用程序 (app) 的准确性,以进行检测
该应用程序使用计算机视觉自动量化对儿童行为的观察。
分析并部署在广泛可用的设备上该应用程序用于纵向结果监控的可用性。
将在16-30、36和48个月龄时评估使用计算机视觉分析来测量的可行性。
项目 2 将探索在家中录制的视频中的看护者与儿童互动的模式。
使用北卡罗来纳州医疗补助和蓝十字蓝盾索赔的补充自闭症筛查方法
数据(N ~ 230,000,自闭症病例 ~6,000),以创建基于常规的通用自闭症预测模型
然后,使用杜克大学健康系统电子健康收集从出生到 18 个月的健康数据。
记录(EHR;N ~ 64,000,自闭症病例 ~ 800),该项目将使用自然语言处理来评估
索赔数据中未捕获的 EHR 要素的附加预测价值(例如,临床医生注释)将被纳入。
用于深入了解婴幼儿健康状况的性质和患病率
后来被诊断患有自闭症的人,项目 1 和 2 将与初级保健提供者和其他人员合作。
利益相关者设计一个用于自闭症筛查的自动化临床决策支持工具,该工具在未来可以
项目 3 将使用创新的机器学习技术,将其集成到初级保健提供者的临床工作流程中。
开发结合脑电图特征的多模态生物标志物的计算方法
(脑电图)活动和儿童行为的同步测量(例如,社会注意力)通过自动编码
计算机视觉分析,重点关注通过传统方法(一致性、
相位滞后指数)和新颖的神经网络分析方法(判别性跨谱因子分析)
我们的团队开发了这种多模式方法,将在 3-6 岁的自闭症儿童中进行评估。
智力障碍 (ID)、年龄和性别匹配的神经正常儿童以及患有 ID 的自闭症儿童 (IQ <= 70)。
在各个项目中,我们中心的团队将分享尖端的计算方法来开发新工具,这些工具可以
解决自闭症儿童及其家庭获得最佳护理和提高生活质量的长期障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geraldine Dawson其他文献
Geraldine Dawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geraldine Dawson', 18)}}的其他基金
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10443752 - 财政年份:2019
- 资助金额:
$ 241.5万 - 项目类别:
Scalable Computational Platform For Active Closed-Loop Behavioral Coding in Autism Spectrum Disorder
用于自闭症谱系障碍主动闭环行为编码的可扩展计算平台
- 批准号:
10440249 - 财政年份:2019
- 资助金额:
$ 241.5万 - 项目类别:
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10227331 - 财政年份:2019
- 资助金额:
$ 241.5万 - 项目类别:
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10018110 - 财政年份:2019
- 资助金额:
$ 241.5万 - 项目类别:
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10670242 - 财政年份:2019
- 资助金额:
$ 241.5万 - 项目类别:
Scalable Computational Platform For Active Closed-Loop Behavioral Coding in Autism Spectrum Disorder
用于自闭症谱系障碍主动闭环行为编码的可扩展计算平台
- 批准号:
9791518 - 财政年份:2019
- 资助金额:
$ 241.5万 - 项目类别:
Neural signatures, developmental precursors, and outcomes in young children with ASD and ADHD
患有 ASD 和 ADHD 的幼儿的神经特征、发育前兆和结果
- 批准号:
10227712 - 财政年份:2017
- 资助金额:
$ 241.5万 - 项目类别:
A digital health approach to early identification and outcome monitoring in autism
用于自闭症早期识别和结果监测的数字健康方法
- 批准号:
10523407 - 财政年份:2017
- 资助金额:
$ 241.5万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Neuromelanin MRI: A tool for non-invasive investigation of dopaminergic abnormalities in adolescent substance use.
神经黑色素 MRI:一种用于非侵入性调查青少年物质使用中多巴胺能异常的工具。
- 批准号:
10735465 - 财政年份:2023
- 资助金额:
$ 241.5万 - 项目类别:
Epidemiology of multimorbid pediatric atopic and airway diseases and the impact of prenatal maternal environmental exposures and placental epigenetics
多病儿科特应性和气道疾病的流行病学以及产前母亲环境暴露和胎盘表观遗传学的影响
- 批准号:
10745097 - 财政年份:2023
- 资助金额:
$ 241.5万 - 项目类别:
Neurodevelopment of executive function, appetite regulation, and obesity in children and adolescents
儿童和青少年执行功能、食欲调节和肥胖的神经发育
- 批准号:
10643633 - 财政年份:2023
- 资助金额:
$ 241.5万 - 项目类别:
A Translational Research Approach to Healthy Technology Usage in Language-Minority Families with Young Children
有幼儿的语言少数群体家庭健康技术使用的转化研究方法
- 批准号:
10822222 - 财政年份:2023
- 资助金额:
$ 241.5万 - 项目类别:
Does prenatal immune challenge result in increased extra-axial CSF volume?
产前免疫挑战是否会导致轴外脑脊液体积增加?
- 批准号:
10647969 - 财政年份:2023
- 资助金额:
$ 241.5万 - 项目类别: