Discovering novel predictors of minimally verbal outcomes in autism through computational modeling
通过计算模型发现自闭症最低限度语言结果的新预测因素
基本信息
- 批准号:10521901
- 负责人:
- 金额:$ 59.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAge-MonthsAttentionBehaviorChildChild DevelopmentChild LanguageClassificationCommunicationCommunitiesComprehensionComputer ModelsDataData SetDevelopmentDiagnosisDimensionsDisease modelEarly InterventionFailureFoundationsFour-dimensionalGesturesIndividualInterventionJointsKnowledgeLanguageLeadLifeLiteratureMeasurementMethodsModelingNatureOutcomePathway interactionsPatternPredisposing FactorResearchResearch PersonnelRiskRisk FactorsSamplingScienceSurvival AnalysisTestingTimeTrainingValidationalternative communicationautism spectrum disorderautistic childrenbasedata-driven modeleffective interventionexperiencehigh riskinnovationjoint attentionkindergartenlanguage outcomemarkov modelminimal riskmodel developmentnovelpredictive modelingpublic health relevanceskill acquisitionskillsvocalization
项目摘要
The proposed project will create novel multidimensional models to characterize the prelinguistic developmental
pathways leading to verbal and minimally verbal (MV) outcomes in children with autism spectrum disorder
(ASD). Children with ASD experience significant delays in the development of prelinguistic communication
(PLC) skills that are important indicators of progress along a path towards language. PLC skills include
vocalizations, gestures, joint attention, and comprehension. As many as 30% of children with ASD remain MV,
producing very few if any spoken words by the time they reach kindergarten. Significant gaps remain in our
knowledge of early risk factors that predispose children to remain MV. In particular, further research is needed
to identify specific inflection points that are indicative of risk for not progressing to spoken language. The
proposed innovative modeling framework will assess whether transitions between specific prelinguistic stages
and the timing of these transitions represent risk for MV outcomes. Crucially, the project will develop a novel
method for quantifying a child’s risk of a MV outcome at age 5 given their PLC progressions at earlier points in
development. Such information could guide and focus early intervention efforts, such as intensifying therapies
at certain points in development and/or deciding when to introduce augmentative or alternative communication.
The key innovation in this proposal is leveraging Continuous-Time Hidden Markov Models to delineate
progressions of PLC across dimensions of attention, vocalizations, gestures, and comprehension from 18-36
months in children with ASD, and to identify unique multidimensional trajectories that predict which children
remain MV at age 5. The proposal will test the hypothesis that children who are transitioning between PLC
stages more slowly or following atypical patterns of progression are at higher risk for MV outcomes. Aim 1 will
develop and validate state-based models of development of attention, vocalizations, gestures, and
comprehension in a well-characterized sample of typically developing children and separately, children with
ASD (Activity 1a), and then construct a multidimensional model that unifies the individual models to
simultaneously examine progressions across the four dimensions (Activity 1b). Models will be first validated on
a sample of 50 typically developing children observed every 3 months from 6 to 18 months of age, and then
separately validated on a sample of 100 children with ASD observed every 3 months from diagnosis at 18-24
through 36 months of age. Aim 2 will utilize the ASD model from 1b to identify predictors for MV status at 5
years in children with ASD (Activity 2a) and apply a survival analysis approach to turn these predictors into a
quantifiable risk score for MV outcome (Activity 2b).
The models along with the underlying training data will be released to the research community, enabling ASD
and developmental researchers with novel datasets to assess the extent to which their data is consistent with
ours, thus advancing the field of developmental science and laying the foundations for targeted interventions.
拟议的项目将创建新颖的多维模型来表征前语言发展
自闭症谱系障碍儿童获得言语和最低限度言语 (MV) 结果的主要途径
(自闭症谱系障碍)患有自闭症谱系障碍的儿童在语言前交流的发展方面存在显着的延迟。
(PLC) 技能是 PLC 技能进步的重要指标,其中包括。
多达 30% 的 ASD 儿童的发声、手势、共同注意力和理解力仍处于 MV 状态。
当他们到达幼儿园时,他们的口语能力即使有也很少。
特别是,需要进一步研究导致儿童罹患 MV 的早期危险因素。
识别表明不进展到口语的风险的特定拐点。
拟议的创新建模框架将评估特定前语言阶段之间是否存在过渡
至关重要的是,这些转变的时机代表了 MV 结果的风险。
考虑到早期阶段的 PLC 进展,量化儿童 5 岁时发生 MV 结果的风险的方法
此类信息可以指导和集中早期干预工作,例如强化治疗。
在发展的某些时刻和/或决定何时引入增强或替代沟通。
该提案的关键创新是利用连续时间隐马尔可夫模型来描述
18-36 岁期间 PLC 在注意力、发声、手势和理解力方面的进展
患有自闭症谱系障碍(ASD)儿童的几个月,并确定独特的多维轨迹来预测哪些儿童
5 岁时仍保持 MV。该提案将检验以下假设:在 PLC 之间过渡的儿童
进展缓慢或遵循非典型进展模式的阶段 MV 结果的风险较高。
开发并验证基于状态的注意力、发声、手势和发展的模型
理解典型发育儿童的良好特征样本,以及单独患有发育障碍的儿童
ASD(活动 1a),然后构建一个多维模型,将各个模型统一起来
同时检查四个维度的进展(活动 1b)。
对 50 名正常发育的儿童进行抽样调查,从 6 个月到 18 个月大,每 3 个月观察一次,然后
对 100 名患有自闭症谱系障碍 (ASD) 儿童的样本进行单独验证,自 18 至 24 日诊断后每 3 个月观察一次
目标 2 将利用 1b 中的 ASD 模型来确定 5 岁时 MV 状态的预测因子。
患有自闭症谱系障碍 (ASD) 儿童的年数(活动 2a),并应用生存分析方法将这些预测因素转化为
MV 结果的可量化风险评分(活动 2b)。
带有底层训练数据的模型将发布给研究社区,使 ASD
和发展研究人员使用新颖的数据集来评估他们的数据与
我们的,从而推进发展科学领域并为有针对性的干预措施奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NANCY CAROLINE BRADY其他文献
NANCY CAROLINE BRADY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NANCY CAROLINE BRADY', 18)}}的其他基金
Discovering novel predictors of minimally verbal outcomes in autism through computational modeling
通过计算模型发现自闭症最低限度语言结果的新预测因素
- 批准号:
10676845 - 财政年份:2022
- 资助金额:
$ 59.62万 - 项目类别:
Research Component: Multimodal Approach to Word Learning in Children with Autism
研究内容:自闭症儿童词汇学习的多模式方法
- 批准号:
9228906 - 财政年份:2016
- 资助金额:
$ 59.62万 - 项目类别:
The CCS: A Treatment Outcome Measure for Individuals with Severe ID
CCS:严重智力障碍患者的治疗结果衡量标准
- 批准号:
8562989 - 财政年份:2013
- 资助金额:
$ 59.62万 - 项目类别:
The CCS: A Treatment Outcome Measure for Individuals with Severe ID
CCS:严重智力障碍患者的治疗结果衡量标准
- 批准号:
8695425 - 财政年份:2013
- 资助金额:
$ 59.62万 - 项目类别:
Communication Success and AAC: A Model of Symbol Acquisition
沟通成功和 AAC:符号获取模型
- 批准号:
7931002 - 财政年份:2009
- 资助金额:
$ 59.62万 - 项目类别:
Child and Environmental Predictors of Communication Success by beginning VOCA
开始 VOCA 后儿童和环境对沟通成功的预测因素
- 批准号:
7620953 - 财政年份:2008
- 资助金额:
$ 59.62万 - 项目类别:
Communication Success and AAC: A Model of Symbol Acquisition
沟通成功和 AAC:符号获取模型
- 批准号:
7382484 - 财政年份:2007
- 资助金额:
$ 59.62万 - 项目类别:
Communication Success and AAC: A Model of Symbol Acquisition
沟通成功和 AAC:符号获取模型
- 批准号:
7760108 - 财政年份:2007
- 资助金额:
$ 59.62万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 59.62万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 59.62万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 59.62万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 59.62万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 59.62万 - 项目类别: