Dealing with antibiotic resistance: antisense technology

应对抗生素耐药性:反义技术

基本信息

项目摘要

Project Summary/Abstract Bacterial infections are a leading cause of death, compromised health, and disability. Unfortunately, we are currently witnessing an increase in multiresistant infections and a decrease in the development of new antimicrobials. Consequently, the treatment costs are increasing, and a growing number of patients are succumbing to these infections. Furthermore, the increase in hard-to-treat or even untreatable bacteria also compromises medical procedures such as treatment of cancer and other chronic diseases, surgery, organ transplants, dental work, and care for premature infants. Compounding the problem, since SARS-CoV-2 coinfection with multidrug resistant bacteria has already been documented, the COVID-19 pandemic could accelerate the rise in antibiotic resistance by increasing patient exposure to antimicrobials. A solution to the antibiotic resistance problem could be the continuous development of new classes of antimicrobials. However, this route is slow and costly and needs to be complemented with other strategies. This proposal responds to this need and concentrates on searching strategies to extend the useful life of currently available drugs. The aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib] is responsible for most cases of resistance to amikacin (Ak) and other aminoglycosides in Gram-negative pathogens. The dissemination of the aac(6′)-Ib gene among these pathogens erodes the efficacy of these antibiotics, which are an important component of the armamentarium against severe infections. The long-term goal of this research is to develop compounds that reduce Ak resistance to susceptibility levels and can be used as adjuvants to treat Ak-resistant infections. Specific aim 1 of this project proposes to optimize the structure of cell-penetrating peptides (CPP) bound to oligonucleotide analogs, known as external guide sequences (EGSs), that bind a complementary region of the aac(6′)-Ib mRNA and form a substrate for RNase P, which cleaves the mRNA preventing translation. The planned experiments consist of designing protease-resistant CPPs that maximize internalization and testing chimeric oligomers composed of deoxyribonucleotides and the newest generation of bridge nucleic acids. Specific Aim 2 will identify small molecule inhibitors of the AAC(6′)-Ib using combinatorial libraries and optimize them by structure-activity relationship analysis. This Specific aim also proposes to design water-soluble ionophores that in complex with zinc ions are strong inhibitors of the enzymatic inactivation of Ak. Specific aim 3 consists of testing the effect of Ak in association with combinations of the different compounds identified in the previous specific aims on Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii model strains using three-dimensional checkerboard assays, time-kill assays, and treatment of infections in the Galleria mellonella infection model. The most promising combinations will then be tested on about 100 genotypically well-defined K. pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae clinical isolates.
项目概要/摘要 细菌感染是死亡、健康受损和残疾的主要原因。不幸的是,我们确实是这样。 目前,多重耐药感染有所增加,而新发耐药菌的出现则有所减少。 抗微生物药物的检查,治疗费用不断增加,而且越来越多的患者接受治疗。 此外,难以治疗甚至无法治疗的细菌也会增加。 损害医疗程序,例如癌症和其他慢性疾病的治疗、手术、器官 自 SARS-CoV-2 以来,移植、牙科治疗和早产儿护理使问题变得更加复杂。 多重耐药细菌的双重感染已被记录,COVID-19 大流行可能 通过增加患者接触抗菌药物来加速抗生素耐药性的上升。 抗生素耐药性问题可能是新型抗菌药物的不断开发造成的。 这条路线缓慢且成本高昂,需要与其他策略相辅相成。 这一需求并集中于寻找延长现有药物使用寿命的策略。 氨基糖苷 6′-N-乙酰转移酶 Ib 型 [AAC(6′)-Ib] 是大多数耐药病例的原因 阿米卡星 (Ak) 和氨基其他糖苷在革兰氏阴性病原体中的 aac(6')-Ib 传播。 这些病原体中的基因削弱了这些抗生素的功效,而抗生素是抗生素的重要组成部分。 这项研究的长期目标是开发抗严重感染的药物。 降低 Ak 耐药性至易感水平,可用作治疗 Ak 耐药感染的佐剂。 该项目的具体目标 1 提出优化细胞穿透肽 (CPP) 的结构 寡核苷酸类似物,称为外部引导序列(EGS),可结合 aac(6')-Ib mRNA 并形成 RNase P 的底物,RNase P 会切割 mRNA,从而阻止翻译。 计划的实验包括设计可最大限度内化的抗蛋白酶 CPP 和测试 由脱氧核糖核苷酸和最新一代桥核酸组成的嵌合寡聚物。 具体目标 2 将使用组合文库识别 AAC(6')-Ib 的小分子抑制剂并进行优化 通过结构-活性关系分析,该特定目标还建议设计水溶性的。 与锌离子复合的离子载体是 Ak 酶失活的强抑制剂。 图 3 包括测试 Ak 与中鉴定的不同化合物的组合的作用。 之前针对大肠杆菌、肺炎克雷伯菌和鲍曼不动杆菌模型的具体目标 使用三维棋盘分析、时间杀灭分析和感染治疗来鉴定菌株 最有希望的组合将在大约 100 个上进行测试。 基因型明确的肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和阴沟肠杆菌 临床分离株。

项目成果

期刊论文数量(71)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ.
  • DOI:
    10.1371/journal.pone.0047690
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Sala CD;Soler-Bistué AJ;Korprapun L;Zorreguieta A;Tolmasky ME
  • 通讯作者:
    Tolmasky ME
Aminoglycoside modifying enzymes.
  • DOI:
    10.1016/j.drup.2010.08.003
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    24.3
  • 作者:
    Ramirez, Maria S.;Tolmasky, Marcelo E.
  • 通讯作者:
    Tolmasky, Marcelo E.
Role of Xer site-specific recombination in the genesis of pJHCMW1: an evolutionary hypothesis.
Xer 位点特异性重组在 pJHCMW1 发生中的作用:进化假设。
  • DOI:
    10.1016/j.jgar.2023.07.017
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Traglia,German;Ramirez,MariaSoledad;Tolmasky,MarceloE
  • 通讯作者:
    Tolmasky,MarceloE
Amikacin: Uses, Resistance, and Prospects for Inhibition.
  • DOI:
    10.3390/molecules22122267
  • 发表时间:
    2017-12-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramirez MS;Tolmasky ME
  • 通讯作者:
    Tolmasky ME
Whole-Genome Comparative Analysis of Two Carbapenem-Resistant ST-258 Klebsiella pneumoniae Strains Isolated during a North-Eastern Ohio Outbreak: Differences within the High Heterogeneity Zones.
  • DOI:
    10.1093/gbe/evw135
  • 发表时间:
    2016-07-03
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ramirez MS;Xie G;Traglia GM;Johnson SL;Davenport KW;van Duin D;Ramazani A;Perez F;Jacobs MR;Sherratt DJ;Bonomo RA;Chain PS;Tolmasky ME
  • 通讯作者:
    Tolmasky ME
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARCELO E TOLMASKY其他文献

MARCELO E TOLMASKY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARCELO E TOLMASKY', 18)}}的其他基金

CHERP Cancer Research Education Program
CHERP 癌症研究教育计划
  • 批准号:
    10302809
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
CHERP Administrative Core
CHERP 管理核心
  • 批准号:
    10492740
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
1/2 CSUF/UCI-CFCCC Cancer Health Disparities Research Program (CHERP)
1/2 CSUF/UCI-CFCCC 癌症健康差异研究计划 (CHERP)
  • 批准号:
    10684039
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
1/2 CSUF/UCI-CFCCC Cancer Health Disparities Research Program (CHERP)
1/2 CSUF/UCI-CFCCC 癌症健康差异研究计划 (CHERP)
  • 批准号:
    10302802
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
1/2 CSUF/UCI-CFCCC Cancer Health Disparities Research Program (CHERP)
1/2 CSUF/UCI-CFCCC 癌症健康差异研究计划 (CHERP)
  • 批准号:
    10492739
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
CHERP Cancer Research Education Program
CHERP 癌症研究教育计划
  • 批准号:
    10492749
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
CHERP Cancer Research Education Program
CHERP 癌症研究教育计划
  • 批准号:
    10684045
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
CHERP Administrative Core
CHERP 管理核心
  • 批准号:
    10302803
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
CHERP Administrative Core
CHERP 管理核心
  • 批准号:
    10684040
  • 财政年份:
    2021
  • 资助金额:
    $ 42.6万
  • 项目类别:
DEALING WITH ANTIBIOTIC RESISTANCE--ANTISENSE TECHNOLOGY
应对抗生素耐药性——反义技术
  • 批准号:
    6083937
  • 财政年份:
    2000
  • 资助金额:
    $ 42.6万
  • 项目类别:

相似国自然基金

三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
  • 批准号:
    52361040
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
  • 批准号:
    62374057
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
磁性二维Fe3GeTe2材料的液相剥离及其超宽带光电探测性能研究
  • 批准号:
    52301299
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
  • 批准号:
    82300538
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
  • 批准号:
    12304042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 42.6万
  • 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
  • 批准号:
    10762273
  • 财政年份:
    2023
  • 资助金额:
    $ 42.6万
  • 项目类别:
The Oncogene Activated Mitochondrial Unfolded Protein Response Regulates Senescence Biology
癌基因激活线粒体未折叠蛋白反应调节衰老生物学
  • 批准号:
    10598922
  • 财政年份:
    2023
  • 资助金额:
    $ 42.6万
  • 项目类别:
Post-translational regulation of aromatase in aging
衰老过程中芳香酶的翻译后调控
  • 批准号:
    10572625
  • 财政年份:
    2023
  • 资助金额:
    $ 42.6万
  • 项目类别:
Diagnostic utility of antibodies to post-translationally modified nucleosomes in lupus nephritis
翻译后修饰核小体抗体在狼疮性肾炎中的诊断效用
  • 批准号:
    10683684
  • 财政年份:
    2023
  • 资助金额:
    $ 42.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了