Type-I Interferons drive cell-autonomous immunity to malaria
I 型干扰素驱动细胞对疟疾的自主免疫
基本信息
- 批准号:10650860
- 负责人:
- 金额:$ 37.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-21 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAntimalarialsApoptosisAreaArtemisininsAttenuatedAutophagocytosisBehaviorBinding ProteinsBiochemicalBloodCellsClinicalCulicidaeCytolysisCytosolDevelopmentDiseaseDrug resistanceEnterobacteria phage P1 Cre recombinaseErythrocytesExposure toFosteringGenesGoalsGuanosine Triphosphate PhosphohydrolasesHealthHepatocyteHumanImageImmune responseImmunityImmunologicsImmunologyIn VitroInfectionInflammasomeInnate Immune ResponseInterferon Type IInterferonsKnowledgeLicensingLiverLysosomesMalariaMalaria VaccinesMediatingMediatorMembraneMissionMolecularMolecular TargetMorbidity - disease rateMusNatural ImmunityNatureOrganismParasite resistanceParasitesPathway interactionsPersonsPharmaceutical PreparationsPharmacotherapyPhasePlasmodiumPlasmodium vivaxPopulationProcessProteinsPublic HealthPublishingReactive InhibitionReactive Oxygen SpeciesRelapseReporterResearchSeriesSeveritiesSignal InductionSignal PathwaySignal TransductionSocietiesSoutheastern AsiaTherapeuticUnited States National Institutes of HealthVaccinesVacuoleadaptive immune responseburden of illnesscell typeexperimental studyflexibilityglobal healthguanylateimprovedin vivoinnate immune mechanismsinnate immune pathwaysinnovationmalaria infectionmortalitynovelnovel strategiesnovel therapeuticspreventrecruittherapeutic targettooltransmission processvaccine candidate
项目摘要
PROJECT SUMMARY
Malaria, caused by the protozoan Plasmodium is a devastating disease that kills close to half a million people
each year. Plasmodium transmitted by mosquitoes undergo asymptomatic development and replication in the
liver, before transitioning into infecting the red blood cells and causing the deadly clinical disease. Therefore,
hindering Plasmodium infection in the liver has been pursued as a strategy to delay, reduce the severity of, or
prevent clinical malaria. Although natural immune responses are known to control Plasmodium infection in the
liver, we understand very little about the mechanisms that underlie this process. This has prevented us from
harnessing the innate immune pathways in the liver to develop immunological or therapeutic approaches to
impede or eliminate Plasmodium infection in its liver-stage. Our group's long-term goal is to understand the
innate immune mechanisms that control Plasmodium in the liver. The objective of this application is to deter-
mine how type-1 interferons (IFNs) facilitate the elimination of Plasmodium from its host hepatocytes. Our
central hypothesis is that type-1 IFN signaling in the hepatocytes would enable the destruction of the para-
sitophorous vacuolar membrane (PVM), as well as the Plasmodium contained in it through `non-canonical au-
tophagy'. We propose to determine the mechanisms by which type-1 IFNs recruit the autophagy protein LC3
to facilitate the destruction of Plasmodium contained within the parasitophorous vacuole through lysosomal
degradation in Specific Aim 1, and how type-1 IFNs enable a class of interferon induced GTPases, called
guanylate binding proteins to cause mechano-enzymatic degradation of the PVM itself, to initiate a pathway of
programmed cell-death in the infected hepatocytes in Specific Aim 2. Type-1 IFNs are known to induce multiple
genes and pathways in various cell types. The rationale for the proposed research is that, by determining the
specific molecular mediators of type-1 IFN signaling pathway that enable the elimination of Plasmodium in
hepatocytes, we will have identified new, and specific therapeutic opportunities to better control or eliminate
Plasmodium in the liver. This knowledge will be applicable for the development of new immunoprophylactic
antimalarial drugs for travelers, or mass drug administration in malaria endemic areas. Such therapies can also
potentially clear dormant Plasmodium infections in the liver, or help improve live-attenuated anti-malarial vac-
cine candidates targeting the liver-stage of malaria. Our proposed research will employ a series of innovative
tools such as Cre-recombinase expressing Plasmodium capable of ablating specific host genes in only the
infected hepatocytes, and reporter hepatocytes that distinguish the lysis of Plasmodium from that of its PVM.
In addition to taking us a step closer to the control and possible eradication of malaria, at a fundamental level,
the completion of this proposal will foster the expansion of our knowledge pertinent to the improvement of
human health, advancing the core mission of the NIH.
项目概要
疟疾由原生动物疟原虫引起,是一种毁灭性的疾病,导致近 50 万人死亡
每年。由蚊子传播的疟原虫在体内经历无症状的发育和复制
肝脏,然后转变成感染红细胞并引起致命的临床疾病。所以,
阻碍肝脏中的疟原虫感染已被视为延缓疟原虫感染、减轻其严重程度或
预防临床疟疾。尽管已知自然免疫反应可以控制疟原虫感染
肝脏,我们对这一过程背后的机制知之甚少。这使得我们无法
利用肝脏中的先天免疫途径来开发免疫学或治疗方法
阻止或消除肝脏阶段的疟原虫感染。我们小组的长期目标是了解
控制肝脏中疟原虫的先天免疫机制。此应用程序的目的是阻止
我想了解 1 型干扰素 (IFN) 如何促进从宿主肝细胞中消除疟原虫。我们的
中心假设是肝细胞中的 1 型干扰素信号传导能够破坏副细胞
sitophorous 液泡膜(PVM),以及通过“非规范au-”包含在其中的疟原虫
土噬'。我们建议确定 1 型干扰素招募自噬蛋白 LC3 的机制
促进通过溶酶体破坏寄生液泡内所含的疟原虫
具体目标 1 中的降解,以及 1 型 IFN 如何启用一类干扰素诱导的 GTP 酶,称为
鸟苷酸结合蛋白引起 PVM 本身的机械酶降解,启动一条途径
具体目标 2 中受感染肝细胞中的程序性细胞死亡。已知 1 型 IFN 可诱导多种
各种细胞类型中的基因和通路。拟议研究的基本原理是,通过确定
1 型 IFN 信号通路的特定分子介质,能够消除体内的疟原虫
肝细胞,我们将确定新的、特定的治疗机会,以更好地控制或消除
肝脏中的疟原虫。这些知识将适用于开发新的免疫预防药物
为旅行者提供抗疟药物,或在疟疾流行地区进行大规模药物管理。此类疗法还可以
可能清除肝脏中的休眠疟原虫感染,或有助于改善减毒活抗疟疾疫苗
针对疟疾肝脏阶段的候选电影。我们提出的研究将采用一系列创新
工具,例如表达疟原虫的 Cre 重组酶,能够仅消除特定宿主基因
感染的肝细胞和报告肝细胞可区分疟原虫的裂解与其 PVM 的裂解。
除了让我们在根本上更接近控制和可能根除疟疾之外,
该提案的完成将促进我们对改进相关知识的扩展
人类健康,推进 NIH 的核心使命。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samarchith Kurup其他文献
Samarchith Kurup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samarchith Kurup', 18)}}的其他基金
Type-I Interferons drive cell-autonomous immunity to malaria
I 型干扰素驱动细胞对疟疾的自主免疫
- 批准号:
10522139 - 财政年份:2022
- 资助金额:
$ 37.75万 - 项目类别:
相似国自然基金
GC Malaria - 利用按蚊天然抗疟共生菌阻断疟疾传播
- 批准号:
- 批准年份:2022
- 资助金额:150 万元
- 项目类别:
老药二次研发:靶向PfHDAC1的新型多时期抗耐药疟疾候选药物发现
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
负调控因子SOCS家族在抗疟疾种属特异性免疫反应中的分子调控机制研究
- 批准号:81801579
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
抗疟疾乌药烷二聚倍半萜的发现与研究
- 批准号:21772212
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
基因组印记作为宿主抗疟疾感染关键防御作用的机制研究
- 批准号:81772214
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
Exploiting the Metabolic Dependencies of Pediatric AML
利用儿科 AML 的代谢依赖性
- 批准号:
10664637 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Type-I Interferons drive cell-autonomous immunity to malaria
I 型干扰素驱动细胞对疟疾的自主免疫
- 批准号:
10522139 - 财政年份:2022
- 资助金额:
$ 37.75万 - 项目类别:
ROS Targeted Therapy for Lethal Prostate Cancer
ROS 靶向治疗致命性前列腺癌
- 批准号:
10322179 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别:
ROS Targeted Therapy for Lethal Prostate Cancer
ROS 靶向治疗致命性前列腺癌
- 批准号:
10112557 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别:
Regulation of Substrate Binding in the bc1 Complex
bc1 复合物中底物结合的调节
- 批准号:
10203271 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别: