ConProject-001
ConProject-001
基本信息
- 批准号:10649483
- 负责人:
- 金额:$ 15.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAMOT geneAccelerationAmniotic SacBMP4BedsBiological ModelsCell Differentiation processCell NucleusCellsCouplesCystDataDevelopmentEarly DiagnosisEmbryoEmbryonic DevelopmentEndodermEpiblastEpitheliumEquilibriumEthicsEventFertilityGelGene ActivationGenerationsGeneticGenetic EngineeringGenetic TranscriptionGoalsHumanHuman DevelopmentImageImplantInner Cell MassInvestigationKnowledgeLightLiquid substanceLocationManuscriptsMechanicsMembraneMesodermModelingModificationMolecularMolecular ProbesMonkeysMovementMusNatureNuclearPathway interactionsPatternPopulationPregnancyPrimatesProcessRodentRoleSideSignal TransductionSignaling MoleculeSiteStructureSupporting CellSystemTestingTight JunctionsUp-RegulationUterusValidationWorkamnionblastocystcell typegastrulationhuman embryonic stem cellhuman modelhuman pluripotent stem cellimplantationimprovedin vitro Modelinhibitormechanical signalmechanotransductionmouse modelnoveloverexpressionpluripotencyprogramsprospectiveself organizationsingle-cell RNA sequencingspecies differencethree dimensional cell culturetooltranscription factor
项目摘要
The amniotic membrane forms a tough fluid-filled sac that protects the developing embryo and is essential for
a successful pregnancy. Amniogenesis initiates early in human development as the embryo implants into the
uterine wall: the inner cell mass first polarizes to form a pluripotent cyst with central lumen and subsequently,
one half of this polarized cyst loses pluripotency markers and becomes squamous in nature (the prospective
amniotic ecotderm) while the other side (the epiblast) remains pluripotent. Gastrulation begins on the epiblast
side soon thereafter. These early post-implantation developmental steps are inaccessible to study in humans,
leaving an enormous gap in our knowledge about amnion fate determination and formation of the amniotic sac,
despite the central importance of these events to the survival of the developing embryo. A new in vitro model
can help to close that gap: human pluripotent stem cells (hPSC), cultured in specific 3D conditions, form
polarized pluripotent cysts that spontaneously self-organize into symmetric cysts composed entirely of amnion
cells (90-95%) as well as asymmetric cysts that resemble amniotic sac-like structures (5-10%). Asymmetrically
patterned cysts mirror Carnegie stage 5c human embryos and are called “post-implantation amniotic sac
embryoids” or “PASE”. Cyst formation occurs progressively over five days in culture. Live imaging shows that
asymmetric cysts arise from focal flattening at one pole of the cyst and laterally spreading of amnion fate;
symmetric cysts arise when flattening occurs in a multi-focal pattern. Mechanistically, the initial trigger for
amnion differentiation is mechanical and that this causes presumptive amnion cells to activate a BMP signaling
program that is both necessary and sufficient for amniogenesis. At 5 days of culture, PASE contain distinct
populations of amnion, epiblast and boundary cells; epiblast cells initiate EMT movements similar to
gastrulation. We will exploit this robust in vitro model to accomplish the following goals: Aim 1) Explore how
mechanical signals activate BMP signaling. Novel PiggyBac-based tools for genetic modification of hESC will
aid in these studies. Aim 2) Establish the hierarchy of gene activation that results in amniogenesis and
development of mature PASE. Single cell RNAseq will be used to dissect the transcriptional cascade that
accompanies symmetry breaking, spreading amniogenesis, boundary formation and initiation of epiblast EMT
movements. Aim 3) Functionally test transcription factors that control amnion fate. Genetic deletion and
overexpression studies will be used to explore the role of several potential master regulators of amnion fate.
Overall, the work proposed here will greatly accelerate the pace of discovery regarding critical but previously
inaccessible post-implantation events and thus will have enormous implications for understanding early
processes that impact embryonic development and human fertility.
羊膜膜形成一个充满坚硬液体的囊,可保护发育的胚胎,对于
成功的怀孕。羊膜发生在人类发展的早期开始,因为胚胎会进入
子宫壁:内部细胞质量最初偏振以形成带有中央管腔的多能囊肿,然后
这种两极分化的囊肿的一半失去多能标记并成为平方(前瞻性
羊膜ecotderm)而另一侧(层状)仍然多能。胃分布在层细胞上
此后不久。这些早期的植入后发展步骤无法在人类中学习,
在我们对羊膜命运的确定和羊膜囊的形成方面的了解中留下了巨大的差距,
尽管这些事件对发展中的胚胎的生存至关重要。新的体外模型
可以帮助缩小差距:在特定3D条件下培养的人类多能干细胞(HPSC)形式
偏光多能囊肿,从而自信地将自组织化为完全由羊膜组成的对称囊肿
细胞(90-95%)以及类似于羊膜囊样结构(5-10%)的不对称囊肿。不对称
图案囊肿镜面卡内基阶段5C人类胚胎,称为“植入后羊膜囊
胚胎或“ PASE”。囊肿形成在培养物中逐渐发生。实时成像表明
不对称囊肿是由囊肿的一个极点在囊肿的一个极点扁平而产生的。
当以多焦点模式发生变平时,会产生对称囊肿。从机械上讲,最初的触发器
羊膜分化是机械的,这会导致推定羊膜细胞激活BMP信号
既需要且足够的羊膜生成的程序。在培养的5天时,PASE包含不同的
羊膜,层细胞和边界细胞的种群; epiblast细胞启动EMT运动类似
过度。我们将利用这种强大的体外模型来实现以下目标:目标1)探索如何
机械信号激活BMP信号。新型基于Piggybac的基于hESC的基因修饰工具将
协助这些研究。目标2)建立基因激活的层次结构,从而导致羊膜发生和
成熟PASE的开发。单细胞RNASEQ将用于剖析转录级联
涉及对称性破裂,扩散羊Amniogenogeny,边界形成和EMT EMT的主动性
动作。目标3)在功能上测试控制羊膜命运的转录因子。遗传缺失和
过表达研究将用于探索羊膜命运的几个潜在主调节剂的作用。
总体而言,这里提出的工作将极大地加速有关关键但以前的发现空间
无法访问的后植入事件,因此将对早期理解具有巨大的影响
影响胚胎发育和人类生育的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenichiro Taniguchi其他文献
Kenichiro Taniguchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenichiro Taniguchi', 18)}}的其他基金
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10424552 - 财政年份:2020
- 资助金额:
$ 15.29万 - 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10650853 - 财政年份:2020
- 资助金额:
$ 15.29万 - 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10249295 - 财政年份:2020
- 资助金额:
$ 15.29万 - 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10029458 - 财政年份:2020
- 资助金额:
$ 15.29万 - 项目类别:
A self-organizing embryoid model of peri-implantation human development
人类植入前发育的自组织胚状体模型
- 批准号:
10019413 - 财政年份:2019
- 资助金额:
$ 15.29万 - 项目类别:
A self-organizing embryoid model of peri-implantation human development
人类植入前发育的自组织胚状体模型
- 批准号:
10649470 - 财政年份:2019
- 资助金额:
$ 15.29万 - 项目类别:
相似海外基金
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
- 批准号:
10664507 - 财政年份:2023
- 资助金额:
$ 15.29万 - 项目类别:
Sex specific epigenetic regulation of colon cancer metastasis
结肠癌转移的性别特异性表观遗传调控
- 批准号:
10443932 - 财政年份:2022
- 资助金额:
$ 15.29万 - 项目类别:
Role of Host Angiomotin as a Central Regulator of Filovirus Egress and Dissemination
宿主血管动蛋白作为丝状病毒排出和传播的中央调节剂的作用
- 批准号:
10380684 - 财政年份:2021
- 资助金额:
$ 15.29万 - 项目类别: