Assessing and Reducing Opioid Misuse Among Veterans in VA and Non-VA Systems: Coordination of Fragmented Care

评估和减少退伍军人管理局和非退伍军人管理局系统退伍军人中阿片类药物滥用:分散护理的协调

基本信息

项目摘要

Project Summary The US opioid epidemic has put a significant burden on Veterans and the VA. Veterans often suffer from chronic pain syndromes due to war injuries, toxic exposures, and deployment-related psychiatric comorbidities and are vulnerable to opioid use/misuse. Chronic pain syndromes occur in 65.4% of U.S. veterans, 9.1% of it severe, as against 56 and 6.4% in non-veterans respectively. Both opioid misuse and unrelieved pain have been linked to a higher risk of suicide among Veterans, greater among women. To address the opioid epidemic in the VA, in August 2013, the VA deployed the Opioid Safety Initiative (OSI) to ensure that opioids are used in a safe, effective, and judicious manner and the Stratification Tool for Opioid Risk Management (STORM). Although the implementation of OSI has substantially reduced risky and other opioid prescriptions in VHA and increased use of non-opioid treatments for pain, there remain major gaps in evidence to formulate comprehensive policy as current data is almost exclusively derived from Veterans receiving care within the VHA. This is important as ~80% of the Veterans have private health insurance. It has been reported that Veterans who receive dual VHA and non-VHA care received more opioid prescriptions and more risky prescriptions, that mono VHA users. Also, while opioid overdose rates have been increasing in VHA enrollees VHA Opioid prescriptions in these veterans declined. To address the prescription drug misuse problem, states use Prescription Drug Monitoring Programs (PDMPs), which are electronic databases that collect and track prescription data on controlled substances to reduce their abuse and diversion. However, despite access to these data via Health Information Exchanges (HIE), the guideline-discordant unsafe and concurrent prescriptions and fillings of opioids continue. Also, PDMP data alone are not suitable for policy decisions and practice recommendations as they lack the detailed clinical information necessary to make a comprehensive evaluation of underlying factors associated with non-guideline-concordant prescriptions. Our preliminary data show a decline in Opioid prescriptions with less decline in the diagnosis of Opioid Use Disorder. The absence of community data is also mentioned as a major deficiency in the study and analyses of the opioid misuse crisis in a 2017 VA Office of Inspector General Report. In this VHA HSR&D Merit Review Application we propose to examine factors associated with prescription opioid misuse, specifically the guideline-discordant use of opioids, in 3 Veterans groups, (1) VHA mono-users, (2) VHA paid dual users of both VHA and non-VHA care, and (3) non-VHA paid dual users. We also propose to conduct an interview/focus group study of VA and non-VA community health providers perspectives on: a) barriers and facilitators in providing guideline- concordant care to the dual users, and b) coordination strategies to reduce opioid misuse in the dual user groups. These aims will be achieved by analyzing the complex data using novel deep learning and natural language processing methods in addition to the state-of-the-art statistical methods. The data involved will include the VHA and MedStar Health (largest healthcare system in the Mid-Atlantic region) electronic health record (EHR), the Chesapeake Regional Information System for Patients (CRISP) and Medicare databases. We will also bring together VA and non-VA community health providers, including clinicians, administrators, policy makers, and patients. We have conducted preliminary studies and collected preliminary data to demonstrate the feasibility of the proposed deep learning and natural language processing methods as well as our access to VA and non-VA EHR data. The results of the proposed study will be shared with our VHA and community operational partners. Our ultimate goal is to evaluate and improve care coordination and reduce opioid misuse in Veterans who are dual users of VA and community care.
项目摘要 美国阿片类药物流行对退伍军人和弗吉尼亚州造成了重大负担。退伍军人经常遭受 由于战争受伤,有毒暴露和与部署有关的精神病性,慢性疼痛综合症 并且容易受到阿片类药物使用/滥用的影响。慢性疼痛综合征发生在65.4%的美国退伍军人中,其中9.1% 严重的非退伍军人分别为56%和6.4%。阿片类药物滥用和不受欢迎的疼痛都有 与退伍军人之间的自杀风险更高有关,妇女中的自杀风险更大。解决阿片类药物流行病 在弗吉尼亚州,2013年8月,VA部署了阿片类药物安全计划(OSI),以确保使用阿片类药物 一种安全,有效,明智的方式以及阿片类药物风险管理(Storm)的分层工具。 尽管OSI的实施大大降低了VHA和 非阿片类药物治疗的使用增加了疼痛,证据中仍然存在主要差距 全面的政策,因为当前数据几乎完全来自接受护理的退伍军人 vha。这很重要,因为约有80%的退伍军人拥有私人健康保险。据报道 接受双重VHA和非VHA护理的退伍军人获得了更多阿片类药物处方和更风险的处方 处方,单声道用户。同样,虽然阿片类药物过量率在VHA参与者中增加 这些退伍军人中的VHA阿片类药物处方降低了。为了解决处方药滥用问题,说明 使用处方药监测计划(PDMP),它们是收集和跟踪的电子数据库 有关受控物质的处方数据,以减少其滥用和转移。但是,尽管可以使用 这些数据通过健康信息交流(HIE),指南访问不安全和并发 阿片类药物的处方和填充物仍在继续。此外,仅PDMP数据不适用于政策决策和 练习建议,因为它们缺乏使全面的详细临床信息 评估与非固定条件处方相关的基本因素。我们的初步数据 显示阿片类药物处方的下降,阿片类药物使用障碍诊断的下降较少。缺席 社区数据的研究也被认为是研究的主要缺陷和阿片类药物滥用的分析 2017年弗吉尼亚州监察长报告办公室的危机。在此VHA HSR&D优异评论申请中我们 建议检查与处方阿片类药物滥用相关的因素,特别是指南。 使用阿片类药物,在3个退伍军人组中,(1)VHA单用户,(2)VHA付给VHA和非VHA的双用户 护理和(3)非VHA付费双用户。我们还建议对VA进行采访/焦点小组研究 非VA社区卫生提供者对以下方面的观点:a)提供指南的障碍和促进者 - 对双重用户的一致护理,b)减少双重用户中阿片类药物的协调策略 组。这些目标将通过使用新颖的深度学习和自然来分析复杂数据来实现这些目标 语言处理方法除了最新的统计方法。涉及的数据将 包括VHA和MEDSTAR Health(中大西洋地区最大的医疗系统)电子健康 记录(EHR),针对患者的切萨皮克区域信息系统(Crisp)和Medicare数据库。 我们还将将VA和非VA社区健康提供者组合在一起,包括临床医生,管理人员, 决策者和患者。我们已经进行了初步研究,并收集了初步数据 证明拟议的深度学习和自然语言处理方法的可行性以及 我们访问VA和非VA EHR数据。拟议研究的结果将与我们的VHA和 社区运营伙伴。我们的最终目标是评估和改善护理协调并减少 在VA和社区护理双重用户的退伍军人中,阿片类药物滥用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Kupersmith其他文献

Joel Kupersmith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Kupersmith', 18)}}的其他基金

Assessing and Reducing Opioid Misuse Among Veterans in VA and Non-VA Systems: Coordination of Fragmented Care
评估和减少退伍军人管理局和非退伍军人管理局系统退伍军人中阿片类药物滥用:分散护理的协调
  • 批准号:
    10394127
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Assessing and Reducing Opioid Misuse Among Veterans in VA and Non-VA Systems: Coordination of Fragmented Care
评估和减少退伍军人管理局和非退伍军人管理局系统退伍军人中阿片类药物滥用:分散护理的协调
  • 批准号:
    10187327
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Addressing Surgical Disparities at the Root; Working to improve diversity in the surgical workforce
从根本上解决手术差异;
  • 批准号:
    10639471
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
School-Partnered Collaborative Care (SPACE) for Pediatric Type 1 Diabetes
针对儿童 1 型糖尿病的学校合作协作护理 (SPACE)
  • 批准号:
    10640614
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
  • 批准号:
    10649741
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Addressing Gaps in Language Access Services through a Patient-Centered Decision-Support Tool
通过以患者为中心的决策支持工具解决语言获取服务中的差距
  • 批准号:
    10699030
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Center for Virtual Care Value and Equity (ViVE)
虚拟护理价值和公平中心 (ViVE)
  • 批准号:
    10621602
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了