Waves and noise in hippocampo-cortical circuit: a study of Alzheimer's disease

海马皮质回路中的波和噪声:阿尔茨海默病的研究

基本信息

项目摘要

ABSTRACT Neurons in the brain are submerged into oscillating extracellular Local Field Potential (LFP) created by synchronized synaptic currents. The dynamics of these oscillations is one of the principal characteristics of the brain activity at all levels: from the individual neurons’ spiking to the activity of networks that underlie high-level cognitive processes. However, our interpretation of the LFP structure and functions depend on the techniques that we use for data analyses. The oscillatory nature of LFP motivates using Fourier methods, which have dominated LFP research for decades and currently constitute the only systematic framework for understanding the “brain rhythms.” Yet these methods poorly handle two fundamental attributes of biological signals: noise and non-stationarity, and may therefore obscure the structure of the LFP data and its physiological meaning. We have recently adapted a powerful technique that previously applied to studying complex physical signals (e.g., gravitational waves, magnetic resonances, etc.) for nuanced analysis of the LFP oscillations. By applying this method, we discovered that hippocampal and cortical LFPs recorded in rodents consist of a few frequency-modulated waves, which we call Oscillons. We hypothesize that these objects represent the actual, physical structure of the brain waves and hence may hold keys to better understanding of the circuit mechanisms of learning and memory. Another principal feature of our method is an impartial marker of the noise component, which allows us to identify and remove the “noise shell” from the signal and then to investigate not only the noise itself, but also the interplays between the noise and the regular, oscillatory part of the signal, their interactions with neuronal spiking, etc. Since Alzheimer’s Disease (AD) is characterized by alterations in both the oscillatory and stochastic activity in the hippocampal network, the quest of better understanding of AD-induced pathologies fits ideally the strengths of our approach. Our goal is to use it for studying the circuit mechanisms of AD and to learn to manipulate the network activity through our methodology.
抽象的 大脑中的神经元被浸入振荡的细胞外局部场电位(LFP)。 同步合成电流。这些振荡的动力是主要特征之一 各个级别的大脑活动:从单个神经元的尖峰到基础的网络活动 高级认知过程。但是,我们对LFP结构和功能的解释取决于 我们用于数据分析的技术。 LFP的振荡性是使用傅立叶的 数十年来一直主导LFP研究的方法,目前构成了唯一的系统性 理解“大脑节奏”的框架。然而,这些方法处理两个基本的方法很差 生物信号的属性:噪声和非平稳性,因此可能掩盖了该结构 LFP数据及其物理含义。我们最近改编了一种强大的技术 用于研究复杂的物理信号(例如,引力波,磁共振等) LFP振荡的细微分析。通过应用这种方法,我们发现海马和 记录在啮齿动物中的皮质LFP由一些频率调节的波组成,我们称之为oscillons。 我们假设这些对象代表了脑波的实际物理结构,因此 可能会有钥匙更好地了解学习和记忆的电路机制。其他 我们方法的主要特征是噪声组件的公正标记,它使我们能够识别 并从信号中删除“噪声外壳”,然后不仅要调查噪声本身,还会调查 噪声和信号的常规振荡部分之间的相互作用,它们与神经元的相互作用 尖峰等 由于阿尔茨海默氏病(AD)的特征是振荡和随机性改变 在海马网络中的活动,寻求更好地了解AD诱导的病理 理想情况下,我们方法的优势。我们的目标是将其用于研究AD的电路机制和 学会通过我们的方法来操纵网络活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuri Alexander Dabaghian其他文献

Yuri Alexander Dabaghian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuri Alexander Dabaghian', 18)}}的其他基金

Waves and noise in hippocampo-cortical circuit: a study of Alzheimer's disease
海马皮质回路中的波和噪声:阿尔茨海默病的研究
  • 批准号:
    10301314
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Waves and noise in hippocampo-cortical circuit: a study of Alzheimer's disease
海马皮质回路中的波和噪声:阿尔茨海默病的研究
  • 批准号:
    10468177
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Oscillons in Wakefulness and in Sleep: Discrete Structure of Hippocampal Brain Rhythms
清醒和睡眠中的振荡:海马脑节律的离散结构
  • 批准号:
    10596532
  • 财政年份:
    2019
  • 资助金额:
    $ 39.46万
  • 项目类别:
Oscillons in Wakefulness and in Sleep: Discrete Structure of Hippocampal Brain Rhythms
清醒和睡眠中的振荡:海马脑节律的离散结构
  • 批准号:
    10226824
  • 财政年份:
    2019
  • 资助金额:
    $ 39.46万
  • 项目类别:
Oscillons in Wakefulness and in Sleep: Discrete Structure of Hippocampal Brain Rhythms
清醒和睡眠中的振荡:海马脑节律的离散结构
  • 批准号:
    10395559
  • 财政年份:
    2019
  • 资助金额:
    $ 39.46万
  • 项目类别:
The Dynamics of Hippocampal-parietal Correlations
海马-顶叶关联的动力学
  • 批准号:
    7339851
  • 财政年份:
    2006
  • 资助金额:
    $ 39.46万
  • 项目类别:

相似海外基金

Targeting cellular senescence to prevent epileptogenesis
针对细胞衰老预防癫痫发生
  • 批准号:
    10362263
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
Waves and noise in hippocampo-cortical circuit: a study of Alzheimer's disease
海马皮质回路中的波和噪声:阿尔茨海默病的研究
  • 批准号:
    10301314
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Waves and noise in hippocampo-cortical circuit: a study of Alzheimer's disease
海马皮质回路中的波和噪声:阿尔茨海默病的研究
  • 批准号:
    10468177
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Mechanisms of Peroxiredoxin 6 Endowed Protection in Alzheimer’s Disease
过氧化还原蛋白 6 对阿尔茨海默病的保护机​​制
  • 批准号:
    10551833
  • 财政年份:
    2020
  • 资助金额:
    $ 39.46万
  • 项目类别:
Role of Presenilin in Idiopathic Dilated Cardiomyopathy
早老素在特发性扩张型心肌病中的作用
  • 批准号:
    8117065
  • 财政年份:
    2010
  • 资助金额:
    $ 39.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了