Interdisciplinary Training in Cognitive, Computational and Systems Neuroscience

认知、计算和系统神经科学跨学科培训

基本信息

  • 批准号:
    8678735
  • 负责人:
  • 金额:
    $ 13.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Summary The fields of biology, psychology, and biomedical engineering have generated exciting new advances in the study of neural systems underlying behavior. Individually, these disciplines have individually provided novel insights into brain function and provide opportunities for improved understanding of disorders of the nervous system, healthy and disordered development, and communication. However, the rapid advancement of scientific progress has been limited by the boundaries surrounding the disciplines. Moreover, neuroscientists that are firmly grounded in an array of approaches used by biologists, psychologists, and engineers will best advance new research technologies such as non-invasive functional imaging and neural prosthetics. A training model that is thoroughly interdisciplinary is needed. At Washington University, we have developed such a model: The Cognitive, Computational, and Systems Neuroscience (CCSN) Pathway produces rigorously trained independent investigators that will lead a new generation of scientists who study the brain in truly integrated interdisciplinary investigations. CCSN serves students from the PhD programs in Biomedical Engineering, Psychology, and Neuroscience. The core of CCSN is a two-year curriculum that emphasizes interdisciplinarity, collaboration, and project-based instruction. In the first year, students take courses that bring them up to speed on the core concepts and methods in Cognitive Psychology, Biological Neural Computation, and Neural Systems. In the second year, students participate in two unique courses that have been specially designed as the capstone to the CCSN pathway Advanced CCSN and Project Building in CCSN. Advanced CCSN consists of a series of interdisciplinary case studies in cutting-edge brain science topics. Each topic is presented as a module by a faculty team drawn from the three home programs. Modules include team-based projects and peer review as well as primary source readings and classroom lectures and discussions. Project Building in CCSN is a fully student-driven course. In collaboration with the faculty leader, each student designs an independent interdisciplinary research project. The faculty leader helps them to assemble an interdisciplinary faculty advising team, to whom they present their project multiple times throughout the semester. Faculty advising is complemented by peer advising including written peer review, culminating in a research grant-style project proposal. Surrounding the core CCSN curriculum is a rich penumbra of activities. These are designed to provide intellectual training and to build a cohort of scientists with the identification and social skills necessary to conduct research in interdisciplinary teams. Formal coursework is provided in Mathematics and Statistics of Experimental Neuroscience, and by an intensive mini- course preceding Advanced CCSN. Immersive Encounters with distinguished visiting scientists provide high-intensity exposure to cutting-edge research. In collaboration with the Saint Louis Science Center, CCSN trains students to communicate with the public and helps them build programs and presentations to teach children and adults about the brain and mind. In its initial phases, CCSN has produced cohorts of young brain scientists on the fast track to new discoveries. Evaluations from students, faculty, and an outside advisory team indicate the pathway is on track for continued growth.
描述(由申请人提供):项目摘要生物学、心理学和生物医学工程领域在行为背后的神经系统研究中取得了令人兴奋的新进展。这些学科各自为大脑功能提供了新颖的见解,并为增进对神经系统疾病、健康和紊乱的发育以及沟通的理解提供了机会。然而,科学进步的快速推进受到学科边界的限制。此外,牢牢扎根于生物学家、心理学家和工程师所使用的一系列方法的神经科学家将最好地推进新的研究技术,例如非侵入性功能成像和神经修复术。需要一种彻底跨学科的培训模式。在华盛顿大学,我们开发了这样一个模型:认知、计算和系统神经科学(CCSN)途径培养经过严格训练的独立研究人员,他们将领导新一代科学家在真正综合的跨学科研究中研究大脑。 CCSN 为生物医学工程、心理学和神经科学博士课程的学生提供服务。 CCSN 的核心是为期两年的课程,强调跨学科、协作和基于项目的教学。在第一年,学生学习的课程可以让他们快速了解认知心理学、生物神经计算和神经系统的核心概念和方法。第二年,学生将参加两门独特的课程,这些课程是专门设计的,作为 CCSN 途径高级 CCSN 和 CCSN 项目建设的顶点课程。 Advanced CCSN 由一系列前沿脑科学主题的跨学科案例研究组成。每个主题都由来自三个家庭项目的教师团队作为一个模块呈现。模块包括基于团队的项目和同行评审以及主要来源阅读以及课堂讲座和讨论。 CCSN 中的项目构建是一门完全由学生驱动的课程。每个学生与教师领导合作,设计一个独立的跨学科研究项目。教师领导帮助他们组建了一个跨学科的教师顾问团队,他们在整个学期多次向他们展示他们的项目。教师建议得到同行建议的补充,包括书面同行评审,最终形成研究资助式的项目提案。 围绕 CCSN 核心课程的是丰富的活动。这些项目旨在提供智力培训,并培养一批具有跨学科团队研究所需的识别能力和社交技能的科学家。正式课程包括实验神经科学的数学和统计学,以及高级 CCSN 之前的强化迷你课程。与杰出的访问科学家进行身临其境的接触,让您高强度地接触前沿研究。 CCSN 与圣路易斯科学中心合作,培训学生与公众沟通的能力,并帮助他们制作项目和演示文稿,向儿童和成人传授有关大脑和心智的知识。 在最初阶段,CCSN 培养了一批年轻的脑科学家,他们正走在新发现的快车道上。学生、教师和外部顾问团队的评估表明,该途径正在持续发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DENNIS L BARBOUR其他文献

DENNIS L BARBOUR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DENNIS L BARBOUR', 18)}}的其他基金

Using Population Contrast Sensitivity Function Data to Develop Tunable Test Procedures
使用群体对比敏感度函数数据开发可调测试程序
  • 批准号:
    10375287
  • 财政年份:
    2022
  • 资助金额:
    $ 13.24万
  • 项目类别:
Using Population Contrast Sensitivity Function Data to Develop Tunable Test Procedures
使用群体对比敏感度函数数据开发可调测试程序
  • 批准号:
    10580023
  • 财政年份:
    2022
  • 资助金额:
    $ 13.24万
  • 项目类别:
Interdisciplinary Training in Cognitive, Computational and Systems Neuroscience
认知、计算和系统神经科学跨学科培训
  • 批准号:
    8877643
  • 财政年份:
    2011
  • 资助金额:
    $ 13.24万
  • 项目类别:
NEURAL ENCODING OF COMPLEX SOUNDS
复杂声音的神经编码
  • 批准号:
    8519100
  • 财政年份:
    2009
  • 资助金额:
    $ 13.24万
  • 项目类别:
NEURAL ENCODING OF COMPLEX SOUNDS
复杂声音的神经编码
  • 批准号:
    7583848
  • 财政年份:
    2009
  • 资助金额:
    $ 13.24万
  • 项目类别:
NEURAL ENCODING OF COMPLEX SOUNDS
复杂声音的神经编码
  • 批准号:
    7851148
  • 财政年份:
    2009
  • 资助金额:
    $ 13.24万
  • 项目类别:
NEURAL ENCODING OF COMPLEX SOUNDS
复杂声音的神经编码
  • 批准号:
    8247259
  • 财政年份:
    2009
  • 资助金额:
    $ 13.24万
  • 项目类别:
NEURAL ENCODING OF COMPLEX SOUNDS
复杂声音的神经编码
  • 批准号:
    8306279
  • 财政年份:
    2009
  • 资助金额:
    $ 13.24万
  • 项目类别:
Effects of Spectral Context on Responses in Auditory Cortex
频谱背景对听觉皮层反应的影响
  • 批准号:
    7845125
  • 财政年份:
    2009
  • 资助金额:
    $ 13.24万
  • 项目类别:
Effects of Spectral Context on Responses in Auditory Cortex
频谱背景对听觉皮层反应的影响
  • 批准号:
    7354797
  • 财政年份:
    2007
  • 资助金额:
    $ 13.24万
  • 项目类别:

相似国自然基金

智能管理控制系统对团队绩效的影响——基于神经科学的实验研究
  • 批准号:
    72302246
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
系统神经科学
  • 批准号:
    31925018
  • 批准年份:
    2019
  • 资助金额:
    400 万元
  • 项目类别:
    国家杰出青年科学基金
从发展认知神经科学角度研究文字加工系统的形成机制
  • 批准号:
    31771229
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
计算神经科学及其在生物声纳神经系统定量化分析中应用研究
  • 批准号:
    60871085
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
神经膜计算系统研究
  • 批准号:
    30870826
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cognitive control targets for the treatment of obsessive compulsive disorder in young children
治疗幼儿强迫症的认知控制目标
  • 批准号:
    10647416
  • 财政年份:
    2023
  • 资助金额:
    $ 13.24万
  • 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
  • 批准号:
    10664783
  • 财政年份:
    2023
  • 资助金额:
    $ 13.24万
  • 项目类别:
Efficiency of evidence accumulation (EEA) as a higher-order, computationally defined RDoc construct
证据积累效率 (EEA) 作为高阶、计算定义的 RDoc 构造
  • 批准号:
    10663601
  • 财政年份:
    2023
  • 资助金额:
    $ 13.24万
  • 项目类别:
Cognitive and Neural Strategies for Latent Feature Inference
潜在特征推理的认知和神经策略
  • 批准号:
    10662877
  • 财政年份:
    2023
  • 资助金额:
    $ 13.24万
  • 项目类别:
ARMCADA - Advancing Reliable Measurement in Cognitive Aging and Decision-making Ability
ARMCADA - 推进认知老化和决策能力的可靠测量
  • 批准号:
    10663728
  • 财政年份:
    2023
  • 资助金额:
    $ 13.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了