Mechanisms of interaction between bacteriophage and their hosts throughout the infection cycle
整个感染周期中噬菌体与其宿主之间的相互作用机制
基本信息
- 批准号:10644004
- 负责人:
- 金额:$ 35.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-13 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bacterial viruses, known as bacteriophages or phages, are among the most abundant biological entities on the
planet. These viruses vary broadly in terms of genome content, infection mechanisms, replication cycles, and
structure. With an increasing interest in using bacteriophages to combat antibiotic resistant bacteria, it is
necessary to understand mechanisms of how these viruses infect their hosts; replicate and regulate both their
genes and their hosts’ genes; and how they persist in various environments, including the human body and/or
storage conditions. However, our current model systems inherently only represent a fraction of bacteriophage
diversity. The long-term goal of this work is to develop an additional bacteriophage system—the Moogleviruses—
that appear to be ubiquitous in the environment and clinically useful qualities. They have, however, only recently
been isolated because they do not commonly infect the model species of bacteria Escherichia coli and
Salmonella enterica. Instead, these viruses are often isolated against the pathogenic bacteria Shigella flexneri
or opportunistic pathogens such as Citrobacter freundii. Because these viruses are obligately lytic and specific
to one of the most common etiological agents of diarrhea, S. flexneri, they could be used for controlling this
species of bacteria in food or water, or for treating antibiotic-resistant infections. At this time, however, we lack
sufficient understanding of their biological processes. Moogleviruses have distinct characteristics versus other
bacteriophages, including a semi-specific host range, a large number of tRNAs encoded in their genomes, and
uncommon capsid and genome sizes. The central hypothesis of this work is that these viruses use alternative
strategies to infect and persist compared to more thoroughly characterized model systems. The objectives of
this specific proposal are therefore to determine the mechanisms Shigella-infecting Moogleviruses use to identify
their hosts, modulate the expression of viral and host genes on a translational level, and assemble into new
particles that can persist in the environment. The expected outcomes of this proposal are: 1) the identification of
critical interacting regions between the phage receptor-binding proteins and both primary and secondary
receptors on the S. flexneri host, along with determining the kinetics of attachment and entry; 2) complete Ribo-
seq and RNA-seq datasets from a variety of environments and infection conditions, leading to a mechanistic
understanding of how phage infection alters translational efficiency of phage and host genes; and 3) a broadly
resolved assembly pathway of the Mooglevirus capsid, with an indication of proteins or protein domains
responsible for affecting capsid stability. This work will have impacts for both basic biology, expanding our
repertoire of known bacteriophage strategies and mechanisms for infection and persistence; and medical
application, informing how these phages themselves could be applied to combat S. flexneri infections in the
clinic, or how their properties could be used to engineer novel phages for medical or industrial applications.
细菌病毒,称为细菌或噬菌体,是最丰富的生物学实体之一
行星。这些病毒在基因组含量,感染机制,复制周期和
结构。随着对使用细菌量对抗抗生素耐药细菌的兴趣越来越多,它是
了解这些病毒如何感染宿主的机制所必需的;复制并调节他们的
基因及其宿主的基因;以及它们如何在各种环境中持续存在,包括人体和/或
存储条件。但是,我们当前的模型系统固有地仅代表噬菌体的一部分
多样性。这项工作的长期目标是开发一个额外的细菌系统 - 摩格病毒 -
这在环境和临床上有用的品质似乎无处不在。但是,他们才最近
我们之所以被孤立,是因为它们通常不感染细菌大肠杆菌的模型种类和
沙门氏菌肠。取而代
或机会主义的病原体,例如柠檬酸菌。因为这些病毒是规则裂解和特异性的
对于腹泻最常见的病因学剂之一,S。flexneri,它们可用于控制这一点
食物或水中的细菌种类,或用于治疗抗生素耐药性感染。但是,目前我们缺乏
充分了解其生物过程。 Mooglevirus具有不同的特征与其他特征
噬菌体,包括半特异性宿主范围,其基因组中编码的大量TRNA和
不常见的衣壳和基因组大小。这项工作的中心假设是这些病毒使用替代方案
与更彻底的模型系统相比,感染和持续存在的策略。目标的目标
因此,该具体建议是为了确定志氏菌的机制用于识别穆格利病毒
他们的宿主在翻译层面调节病毒和宿主基因的表达,然后组装成新的
可以在环境中持续存在的粒子。该提案的预期结果是:1)
噬菌体受体结合蛋白与原发性和次要的临界相互作用区域
S. flexneri宿主的受体,并确定附着和进入的动力学; 2)完整的肋骨 -
来自各种环境和感染条件的SEQ和RNA-SEQ数据集,导致机械
了解噬菌体感染如何改变噬菌体和宿主基因的转化效率; 3)广泛
Mooglevirus Capsid的已解决的组装途径,具有蛋白质或蛋白质结构域的指示
负责影响衣壳稳定性。这项工作将对基本生物学产生影响,扩大我们的
已知的噬菌体策略以及感染和持久性的机制的曲目;和医疗
应用程序,告知这些噬菌体本身如何应用于S. flexneri感染
诊所,或者如何使用其特性来设计新颖的噬菌体,以用于医疗或工业应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:72202154
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:1066033210660332
- 财政年份:2023
- 资助金额:$ 35.39万$ 35.39万
- 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:1072415210724152
- 财政年份:2023
- 资助金额:$ 35.39万$ 35.39万
- 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:1078575510785755
- 财政年份:2023
- 资助金额:$ 35.39万$ 35.39万
- 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:1072245210722452
- 财政年份:2023
- 资助金额:$ 35.39万$ 35.39万
- 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:1072676310726763
- 财政年份:2023
- 资助金额:$ 35.39万$ 35.39万
- 项目类别: