A systems biology approach to elucidate the biology of immune-associated outcomes in breast cancer
阐明乳腺癌免疫相关结果生物学的系统生物学方法
基本信息
- 批准号:10644415
- 负责人:
- 金额:$ 17.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAutoimmuneBRCA1 geneBedsBiologicalBiological MarkersBiologyBody mass indexBreastBreast Cancer PatientBreast OncologyCaliforniaCancer BurdenCancer CenterCaringCellsClinicalClinical DataClinical TrialsComplexComprehensive Cancer CenterComputational BiologyCopy Number PolymorphismCountryDNA RepairDNA Repair DisorderDataData SetDepartment chairDevelopmentDoctor of PhilosophyEnvironmentEthnic OriginExtracellular MatrixFacultyFamilyFluorescenceGene ExpressionGenesGeneticGenomicsGerm-Line MutationGoalsGuidelinesHeritabilityHypoxiaImmuneImmune responseImmunofluorescence ImmunologicImmunology procedureImmunotherapyIn complete remissionInstitutionInterferonsInternationalInterventionLaboratoriesLearningMachine LearningMalignant NeoplasmsMediatingMedicineMentorsMetabolicMethodologyMethodsModelingMultiomic DataMutationNeoadjuvant TherapyOutcomePathologicPathway interactionsPatientsPopulationPositioning AttributePredictive ValuePredispositionPrincipal InvestigatorPrognosisPublicationsPublishingQualifyingRaceReportingResearchResearch ProposalsResidual CancersRoleSNP genotypingSTING1 geneSamplingSan FranciscoSignal PathwaySignal TransductionSingle Nucleotide Polymorphism MapSolidSomatic MutationStromal CellsSystems BiologyT-Lymphocyte SubsetsTechnologyTestingThe Cancer Genome AtlasTherapeuticTimeTrainingTumor-infiltrating immune cellsUniversitiesWomanWorkalternative treatmentcancer clinical trialcancer genomicscareer developmentcell typechemokinecytokinedensityexome sequencingexperiencefluorescence imaginggene interactionhigh riskimmune cell infiltrateimmunological statusimmunoregulationimprovedimproved outcomein silicomachine learning algorithmmachine learning classificationmachine learning methodmachine learning modelmalignant breast neoplasmmultidisciplinarymultiple omicsneoantigensnoveloncology programoptimal treatmentspatient responsepatient stratificationpersonalized medicinepredict clinical outcomepredicting responsepredictive markerpredictive modelingprogramsreceptorresearch and developmentresponserisk varianttargeted treatmenttenure tracktherapy resistanttraittranscriptomicstranslational medicinetreatment armtreatment responsetreatment strategytrial designtumortumor immunologytumor microenvironment
项目摘要
PROJECT SUMMARY
This K01 application seeks protected time for mentored research and career development training for Dr.
Rosalyn Sayaman, PhD to successfully transition to tenure-track faculty with an independent research program
in computational and systems biology, supported by the Chair of Department of Laboratory Medicine. Leveraging
the advances in computational and Machine Learning methods and spearheading multi-omic technologies, Dr.
Sayaman seeks to develop a highly integrative research program that can bridge the gap between in-silico
research and translational medicine, with specific focus on advancing personalized medicine in breast cancer.
As a computational biologist with broad training and methodological experience, and a solid experimental
background, Dr. Sayaman is uniquely positioned to carry out this comprehensive study incorporating the parallel
multi-omic dataset for ~2000 women from the I-SPY 2 Trial. The I-SPY 2 neoadjuvant breast cancer clinical trial
is a personalized, adaptive trial designed to improve outcomes in high-risk breast cancer patients.
Dr. Sayaman’s research proposal employs computational and Machine Learning approaches to dissect
the complex interactions between intrinsic host germline and tumor somatic mutations, and extrinsic tumor
microenvironment (TME) features that mediate the tumor immune response. In Aim 1, Dr. Sayaman elucidates
the role of genomic and TME features in determining the topography of immune populations in the tumor bed. In
Aim 2, she assesses the relative predictive value of these genomic and TME features in predicting subtype-
specific response to neoadjuvant therapy, and 5-year survival in patients who do not respond to therapy. This
work has the potential to generate response-predictive biomarkers that could inform optimal treatment decisions.
To address the multi-disciplinary aspect of this study, Dr. Sayaman has assembled an exemplary team
of mentors who have complementary domains of expertise. Dr. Sayaman’s primary mentor is Dr. Laura van ‘t
Veer, the Co-Leader of the NCI-designated Breast Oncology Program (BOP) and Director of Applied Genomics
at the University of California, San Francisco (UCSF), and Chair of the I-SPY 2 Biomarker Committee. Dr. van ‘t
Veer is the inventor of the FDA-cleared MammaPrint® test included in many national and international breast
cancer guidelines. Dr. Sayaman’s co-mentors include Dr. Laura Esserman, the Director of the UCSF Breast
Care Center, the Clinical Co-Leader of the BOP, and the national Principal Investigator of the I-SPY 2 trial; Dr.
Elad Ziv, a leading cancer geneticist with expertise in statistical genetics and computational approaches in
cancer genomics; and Dr. Michael Campbell, an expert in cancer immunology, who leads the development of
multiplex Immune-Fluorescence assays for immune profiling in breast cancer. Dr. Sayaman’s proposed work
benefits from the world-class research and clinical expertise of the I-SPY 2 Trial Consortium and the rich
institutional environment of UCSF and the Helen Diller Family Comprehensive Cancer Center, one of the premier
cancer centers in the country.
项目摘要
该K01申请为医生的研究和职业发展培训提供了受保护的时间。
罗莎琳·赛曼(Rosalyn Sayaman)
在计算和系统生物学上,得到了实验室医学系主席的支持。利用
计算和机器学习方法的进步以及率领多摩变技术的发展,博士
Sayaman试图制定一项高度综合的研究计划,该计划可以弥合silico之间的差距
研究和翻译医学,特别关注乳腺癌的个性化医学。
作为具有广泛培训和方法论经验的计算生物学家,以及扎实的实验
背景,Sayaman博士是独特的,可以进行这项编码平行的全面研究
来自I-SPY 2试验的〜2000名女性的多OMIC数据集。 I-SPY 2 NEOADJUVANT乳腺癌临床试验
是一项个性化的自适应试验,旨在改善高危乳腺癌患者的预后。
Sayaman博士的研究建议员工计算和机器学习方法剖析
固有宿主种系和肿瘤体细胞突变与外部肿瘤之间的复杂相互作用
微环境(TME)具有介导肿瘤免疫反应的介导。在AIM 1中,Sayaman博士阐明了
基因组和TME特征在确定肿瘤床中免疫种群地形的作用。在
AIM 2,她评估了这些基因组和TME特征的相对预测值,以预测亚型
对不反应治疗的患者的新辅助治疗的特定反应和5年生存。这
工作有可能产生响应预测的生物标志物,可以为最佳的治疗决策提供信息。
为了解决这项研究的多学科方面,Sayaman博士组建了一个示例团队
具有完整专业领域的导师。 Sayaman博士的主要导师是Laura van'T博士
Veer,NCI指定的乳腺癌计划(BOP)的共同领导者和应用基因组学总监
在加利福尼亚大学,旧金山大学(UCSF)和I-SPY 2生物标志物委员会主席。 Van't博士
VEER是许多国家和国际乳房中包含的FDA清除Mammaprint®测试的清单
癌症指南。 Sayaman博士的联合会人员包括UCSF乳房主任Laura Esserman博士
Care Center,BOP的临床共同领导者和I-SPY 2试验的国家首席研究员;博士
Elad Ziv,领先的癌症遗传学家,在统计遗传学和计算方法方面具有专家
癌症基因组学;癌症免疫学专家迈克尔·坎贝尔(Michael Campbell)博士领导
多重免疫荧光测定乳腺癌的免疫分析。 Sayaman博士的拟议工作
来自世界一流的研究和I-SPY 2试验财团和富人的临床专业知识的好处
UCSF的机构环境和Helen Diller家族综合癌症中心,以前是
该国的癌症中心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosalyn Wong Sayaman其他文献
Rosalyn Wong Sayaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 17.32万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 17.32万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别: