A systems biology approach to elucidate the biology of immune-associated outcomes in breast cancer
阐明乳腺癌免疫相关结果生物学的系统生物学方法
基本信息
- 批准号:10644415
- 负责人:
- 金额:$ 17.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAutoimmuneBRCA1 geneBedsBiologicalBiological MarkersBiologyBody mass indexBreastBreast Cancer PatientBreast OncologyCaliforniaCancer BurdenCancer CenterCaringCellsClinicalClinical DataClinical TrialsComplexComprehensive Cancer CenterComputational BiologyCopy Number PolymorphismCountryDNA RepairDNA Repair DisorderDataData SetDepartment chairDevelopmentDoctor of PhilosophyEnvironmentEthnic OriginExtracellular MatrixFacultyFamilyFluorescenceGene ExpressionGenesGeneticGenomicsGerm-Line MutationGoalsGuidelinesHeritabilityHypoxiaImmuneImmune responseImmunofluorescence ImmunologicImmunology procedureImmunotherapyIn complete remissionInstitutionInterferonsInternationalInterventionLaboratoriesLearningMachine LearningMalignant NeoplasmsMediatingMedicineMentorsMetabolicMethodologyMethodsModelingMultiomic DataMutationNeoadjuvant TherapyOutcomePathologicPathway interactionsPatientsPopulationPositioning AttributePredictive ValuePredispositionPrincipal InvestigatorPrognosisPublicationsPublishingQualifyingRaceReportingResearchResearch ProposalsResidual CancersRoleSNP genotypingSTING1 geneSamplingSan FranciscoSignal PathwaySignal TransductionSingle Nucleotide Polymorphism MapSolidSomatic MutationStromal CellsSystems BiologyT-Lymphocyte SubsetsTechnologyTestingThe Cancer Genome AtlasTherapeuticTimeTrainingTumor-infiltrating immune cellsUniversitiesWomanWorkalternative treatmentcancer clinical trialcancer genomicscareer developmentcell typechemokinecytokinedensityexome sequencingexperiencefluorescence imaginggene interactionhigh riskimmune cell infiltrateimmunological statusimmunoregulationimprovedimproved outcomein silicomachine learning algorithmmachine learning classificationmachine learning methodmachine learning modelmalignant breast neoplasmmultidisciplinarymultiple omicsneoantigensnoveloncology programoptimal treatmentspatient responsepatient stratificationpersonalized medicinepredict clinical outcomepredicting responsepredictive markerpredictive modelingprogramsreceptorresearch and developmentresponserisk varianttargeted treatmenttenure tracktherapy resistanttraittranscriptomicstranslational medicinetreatment armtreatment responsetreatment strategytrial designtumortumor immunologytumor microenvironment
项目摘要
PROJECT SUMMARY
This K01 application seeks protected time for mentored research and career development training for Dr.
Rosalyn Sayaman, PhD to successfully transition to tenure-track faculty with an independent research program
in computational and systems biology, supported by the Chair of Department of Laboratory Medicine. Leveraging
the advances in computational and Machine Learning methods and spearheading multi-omic technologies, Dr.
Sayaman seeks to develop a highly integrative research program that can bridge the gap between in-silico
research and translational medicine, with specific focus on advancing personalized medicine in breast cancer.
As a computational biologist with broad training and methodological experience, and a solid experimental
background, Dr. Sayaman is uniquely positioned to carry out this comprehensive study incorporating the parallel
multi-omic dataset for ~2000 women from the I-SPY 2 Trial. The I-SPY 2 neoadjuvant breast cancer clinical trial
is a personalized, adaptive trial designed to improve outcomes in high-risk breast cancer patients.
Dr. Sayaman’s research proposal employs computational and Machine Learning approaches to dissect
the complex interactions between intrinsic host germline and tumor somatic mutations, and extrinsic tumor
microenvironment (TME) features that mediate the tumor immune response. In Aim 1, Dr. Sayaman elucidates
the role of genomic and TME features in determining the topography of immune populations in the tumor bed. In
Aim 2, she assesses the relative predictive value of these genomic and TME features in predicting subtype-
specific response to neoadjuvant therapy, and 5-year survival in patients who do not respond to therapy. This
work has the potential to generate response-predictive biomarkers that could inform optimal treatment decisions.
To address the multi-disciplinary aspect of this study, Dr. Sayaman has assembled an exemplary team
of mentors who have complementary domains of expertise. Dr. Sayaman’s primary mentor is Dr. Laura van ‘t
Veer, the Co-Leader of the NCI-designated Breast Oncology Program (BOP) and Director of Applied Genomics
at the University of California, San Francisco (UCSF), and Chair of the I-SPY 2 Biomarker Committee. Dr. van ‘t
Veer is the inventor of the FDA-cleared MammaPrint® test included in many national and international breast
cancer guidelines. Dr. Sayaman’s co-mentors include Dr. Laura Esserman, the Director of the UCSF Breast
Care Center, the Clinical Co-Leader of the BOP, and the national Principal Investigator of the I-SPY 2 trial; Dr.
Elad Ziv, a leading cancer geneticist with expertise in statistical genetics and computational approaches in
cancer genomics; and Dr. Michael Campbell, an expert in cancer immunology, who leads the development of
multiplex Immune-Fluorescence assays for immune profiling in breast cancer. Dr. Sayaman’s proposed work
benefits from the world-class research and clinical expertise of the I-SPY 2 Trial Consortium and the rich
institutional environment of UCSF and the Helen Diller Family Comprehensive Cancer Center, one of the premier
cancer centers in the country.
项目概要
此 K01 申请旨在为 Dr. 寻求受指导的研究和职业发展培训的保护时间。
罗莎琳·萨亚曼(Rosalyn Sayaman)博士通过独立研究项目成功过渡为终身教授
计算和系统生物学博士,由实验医学系主任支持。
计算和机器学习方法的进步以及领先的多组学技术,博士。
Sayaman 寻求开发一个高度综合的研究计划,以弥补计算机模拟与计算机科学之间的差距。
研究和转化医学,特别关注推进乳腺癌的个性化医学。
作为一名计算生物学家,拥有广泛的训练和方法论经验,以及扎实的实验基础
背景,Sayaman 博士具有独特的优势来开展这项综合研究,其中包括平行研究
I-SPY 2 试验中约 2000 名女性的多组学数据集 I-SPY 2 新辅助乳腺癌临床试验。
是一项个性化、适应性试验,旨在改善高风险乳腺癌患者的治疗结果。
Sayaman 博士的研究提案采用计算和机器学习方法来剖析
内在宿主种系和肿瘤体细胞突变与外在肿瘤之间的复杂相互作用
Sayaman 博士在目标 1 中阐明了介导肿瘤免疫反应的微环境 (TME) 特征。
基因组和 TME 特征在确定肿瘤床中免疫群体的拓扑方面的作用。
目标 2,她评估了这些基因组和 TME 特征在预测亚型方面的相对预测价值
对新辅助治疗的特异性反应,以及对治疗无反应的患者的 5 年生存率。
这项工作有可能产生反应预测生物标志物,为最佳治疗决策提供信息。
为了解决这项研究的多学科方面,Sayaman 博士组建了一个模范团队
Sayaman 博士的主要导师是 Laura van ‘t 博士。
Veer,NCI 指定乳腺肿瘤学项目 (BOP) 联合负责人兼应用基因组学主任
van ‘t 博士是加州大学旧金山分校 (UCSF) 的教授,I-SPY 2 生物标志物委员会主席。
Veer 是经 FDA 批准的 MammaPrint® 测试的发明者,该测试已被许多国家和国际乳腺疾病所采用
Sayaman 博士的共同导师包括 UCSF 乳腺科主任 Laura Esserman 博士。
Care Center,BOP 临床联合负责人,I-SPY 2 试验的国家首席研究员;
Elad Ziv,一位领先的癌症遗传学家,在统计遗传学和计算方法方面拥有专业知识
癌症基因组学;以及癌症免疫学专家 Michael Campbell 博士,他领导了
Sayaman 博士提出的用于乳腺癌免疫分析的多重免疫荧光测定。
受益于 I-SPY 2 试验联盟的世界一流研究和临床专业知识以及丰富的
加州大学旧金山分校 (UCSF) 和海伦迪勒家庭综合癌症中心(美国首屈一指的癌症中心之一)的制度环境
该国的癌症中心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosalyn Wong Sayaman其他文献
Rosalyn Wong Sayaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 17.32万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 17.32万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别: