Macroscale physiology and functional correlates of slow network fluctuations
缓慢网络波动的宏观生理学和功能相关性
基本信息
- 批准号:10639544
- 负责人:
- 金额:$ 34.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive BehaviorsAddressAdultAffectArchivesAreaArousalAttentionBackBehaviorBehavioralBrainCognitionCognitiveCoupledDataData SetDimensionsDouble-Blind MethodElectrocardiogramElectroencephalographyEventFeedbackFunctional Magnetic Resonance ImagingFutureGoalsHeartHumanImpairmentInvestigationLearningLinkMapsMeasuresMemoryMindModalityNeurobiologyParticipantPatternPerformancePharmaceutical PreparationsPhasePhysiologicalPhysiologyPlacebosProbabilityPropertyReaction TimeRecurrenceRegulationRespirationRestRitalinRoleSamplingSignal TransductionSpecific qualifier valueStimulusStructureTask PerformancesTestingTimeVariantbehavioral responsebiophysical modelcognitive benefitscognitive controldata formatdata standardsdesigndirected attentionexperienceexperimental studyfunctional magnetic resonance imaging/electroencephalographyindexingmemory consolidationmemory encodingmemory retentionmoviemultimodalitynervous system disordernetwork modelsneuralvisual tracking
项目摘要
ABSTRACT. Slow fluctuations in behavioral, cognitive, and neural states are an omnipresent feature of the
brain across species and are aberrant in multiple disorders of the nervous system. Slow brain network
fluctuations critically organize behavior across extended timescales: as drifts in arousal over minutes, as well
as our ability to switch between attending externally versus turning internally to plan our future actions and
dwell on recent experiences. Although the contribution of slow brain network fluctuations to behavior have
typically been studied by linking one network measure to one behavior, this project seeks to more broadly
understand slow fluctuations in healthy human participants by i) deeply characterizing their relationship across
multiple measures of brain activity, physiology, behavior, and cognition measured simultaneously and ii)
causally manipulating key factors of cognitive control and arousal which are hypothesized to orchestrate
relationships between slow network fluctuations and ongoing behavior or switching between modes of
externally versus internally oriented attention. To achieve these goals, Aim 1 will perform a deep
characterization of slow network fluctuations by collecting extensive multimodal neural and physiological
recordings in healthy human participants. Simultaneous fMRI, EEG, electrodermal activity, pupillometry,
respiration, ECG, and EMG will be recorded as participants perform an extended array of tasks ranging from
unstructured (rest) to highly structured attention-demanding tasks. Experience sampling will allow us to assess
the contents of ongoing cognition. This rich dataset will allow us to, in an unprecedented manner, measure and
link slow fluctuations across multiple modalities, map their relationship with behavior on externally-oriented
tasks and to the contents of internal cognition. While Aim 1 will examine the relevance of slow fluctuations to
performance on stimulus- driven tasks, our ability to direct attention internally likely has adaptive benefits, a
feature not typically captured in externally-oriented lab-based tasks. Aim 2a will fill in this gap by directly
assessing the contributions of slow brain network fluctuations to supporting internal processing that benefits
our subsequent behavior. Specifically we will measure brain patterns associated with learning and goal
planning tasks, and assess neural and behavioral markers of continued internal processing on these tasks
during a subsequent time period. This will allow us to directly link slow network fluctuations to benefits
associated with internally-oriented cognition, and measure trade-offs between internally- versus externally-
oriented modes of cognition. Another major question relates to regulation of slow network fluctuations. Aim 2b
will assess the potential causal contributions of two key factors, cognitive control and arousal, to slow
fluctuations and their resulting impact on behavior and cognition. These factors will be independently
manipulated via task demands and double-blind drug administration to assess their distinct contributions.
These experiments will dramatically advance our understanding of the role of slow brain network fluctuations in
orchestrating adaptive behavior and cognition.
抽象的。行为,认知和神经状态的缓慢波动是无处不在的特征
跨物种的大脑,在神经系统的多种疾病中异常。慢速大脑网络
波动批判性地整理了跨越长时间尺度的行为:随着唤醒时间在几分钟内漂移
随着我们在参加外部与内部进行计划的能力,以计划未来的行动和
居住在最近的经验上。尽管缓慢的大脑网络波动对行为的贡献具有
通常,通过将一个网络度量与一种行为联系起来,研究了该项目,以更广泛的范围
通过i)深入了解健康参与者的缓慢波动
同时测量的大脑活动,生理,行为和认知的多种测量和II)
有因果操纵认知控制和唤醒的关键因素,这些因素被认为是编排的
缓慢的网络波动与持续行为或在模式之间切换之间的关系
外部与内部关注。为了实现这些目标,AIM 1将执行深度
通过收集广泛的多模式神经和生理学来表征慢网络波动的表征
健康参与者的录音。同时fMRI,脑电图,电肌活动,瞳孔测定法,
呼吸,ECG和EMG将被记录为参与者执行延长的任务。
非结构化(休息)到高度结构化的注意任务。经验抽样将使我们能够评估
持续认知的内容。这个富裕的数据集将使我们以前所未有的方式,衡量和
链接跨多种方式的慢速波动,在面向外部的行为上绘制其与行为的关系
任务和内部认知内容。而目标1将检查缓慢波动与
在刺激驱动的任务上的表现,我们在内部引导注意力的能力可能具有适应性好处,
功能通常不会在基于外部实验室的任务中捕获。 AIM 2A将通过直接填补此空白
评估慢速大脑网络波动对支持内部处理的贡献
我们随后的行为。具体来说,我们将测量与学习和目标相关的大脑模式
计划任务,并评估持续内部处理这些任务的神经和行为标记
在随后的时间段内。这将使我们能够将慢速网络波动与利益联系起来
与内部的认知相关,并在内部与外部之间的权衡 -
定向认知模式。另一个主要问题涉及缓慢网络波动的调节。目标2B
将评估两个关键因素(认知控制和唤醒)的潜在因果贡献,以减缓
波动及其对行为和认知的影响。这些因素将是独立的
通过任务要求和双盲药物管理来评估其不同的贡献。
这些实验将极大地提高我们对慢速大脑网络波动的作用的理解
编排适应性行为和认知。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Peter Milham其他文献
Michael Peter Milham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Peter Milham', 18)}}的其他基金
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
9810689 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10001025 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10626901 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10430126 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10175049 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Neurobiology and Cognitive Role of Slow Brain Network Fluctuations
神经生物学和慢脑网络波动的认知作用
- 批准号:
10639542 - 财政年份:2017
- 资助金额:
$ 34.31万 - 项目类别:
Defining Neuronal Circuits and Cellular Processes Underlying Resting fMRI Signals
定义静息 fMRI 信号下的神经元回路和细胞过程
- 批准号:
9206010 - 财政年份:2016
- 资助金额:
$ 34.31万 - 项目类别:
Longitudinal Discovery of Brain Developmental Trajectories
大脑发育轨迹的纵向发现
- 批准号:
9303454 - 财政年份:2013
- 资助金额:
$ 34.31万 - 项目类别:
Longitudinal Discovery of Brain Developmental Trajectories
大脑发育轨迹的纵向发现
- 批准号:
9085391 - 财政年份:2013
- 资助金额:
$ 34.31万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Optimization of a personalized skin cancer risk intervention for at-risk young adults
针对高危年轻人的个性化皮肤癌风险干预措施的优化
- 批准号:
10582944 - 财政年份:2023
- 资助金额:
$ 34.31万 - 项目类别:
Community reentry for older adults leaving prison with and without health limitations
有或没有健康限制的出狱老年人重返社区
- 批准号:
10741029 - 财政年份:2023
- 资助金额:
$ 34.31万 - 项目类别:
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 34.31万 - 项目类别:
Neural mechanisms of behavioral coordination in Hydra
水螅行为协调的神经机制
- 批准号:
10505359 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别: