Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
基本信息
- 批准号:10640048
- 负责人:
- 金额:$ 44.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedArtificial IntelligenceBenignCancer EtiologyCessation of lifeClassificationClinicalCognitiveCollaborationsCommunicationComputer-Assisted DiagnosisCuesDataDetectionDevicesDiagnosisDiagnosticDiagnostic ProcedureEventFeedbackGlassGoalsHumanImageIntuitionLabelLearningLearning ModuleLengthLocationLung NeoplasmsLung noduleMainstreamingMalignant - descriptorMalignant neoplasm of lungMeasurementMeasuresMethodologyModelingNoduleOutcomes ResearchPatternPennsylvaniaPerformancePhaseProbabilityProcessRadiology SpecialtyReadingReproducibilityResearchScanningScreening for cancerScreening procedureSecond OpinionsShapesSystemTechniquesTechnologyTestingTextureThree-Dimensional ImageTimeTrainingUnited StatesUnited States National Institutes of HealthUniversitiesUpdateVisual attentionVisualizationWomanWorkX-Ray Computed Tomographyartificial intelligence algorithmattenuationcalcificationcareerclinical decision-makingclinical diagnosticscomputer human interactioncone-beam computed tomographydeep learningdeep learning algorithmdeep reinforcement learningdesigndiagnostic accuracyeducational atmosphereefficacy evaluationefficacy validationexperienceexperimental studyflexibilitygazeimprovedinattentioninsightlearning algorithmlearning networklow dose computed tomographylung cancer screeningmenmortalitynovelradiologistsample fixationsatisfactionscreeningstatisticssynergismtechnological innovationtooltumorvirtualvisual searchvisual tracking
项目摘要
PROJECT SUMMARY
Lung cancer is the most common cause of cancer death in both men and women in the United States. Lung
cancer screening with low-dose computed tomography (CT) has been shown to reduce lung cancer mortality.
However, current radiology practice still suffers from (1) high rates of missed tumors and (2) imprecise lung
nodule characterization (malignant vs. benign). Artificial intelligence (AI) based computer aided diagnosis (CAD)
systems have helped radiologists to reduce the missed-tumor rates moderately, but have not been widely
adopted for three key reasons: lack of efficiency, lack of real-time collaboration, and lack of interpretability. The
overall goal of this proposal is to create radiologist-centered artificial intelligence algorithms that are both
interpretable and collaborative and to demonstrate their improved efficacy via lung cancer screening
experiments. The central hypothesis of this effort is that the creation of an AI based virtual cognitive assistant
(VCA) will provide a better understanding of cognitive biases while offering interpretable feedback to radiologists
for an improved screening experience with higher diagnostic accuracy, reproducibility, and efficiency.
Specific aims of the proposal are three-fold. Aim 1: To develop an eye-tracking platform that offers a
realistic radiology reading room experience while extracting gaze patterns from radiologists. This will facilitate
addressing the problem of true collaboration between radiologists and CAD. Radiologists will perform their
screening without any constraints (e.g., wearing glasses) while their gaze patterns and other human-computer
interaction events are tracked, processed, and stored in real time. Aim 2: To develop an automated real-time
collaborative system involving a developed VCA and the radiologist to synergistically improve detection and
diagnostic performances. Using deep learning (DL) algorithms, the VCA will embody a powerful visual attention
model to represent radiologists’ gaze, visual search, and fixation patterns, and will be composed of a detection
component and a diagnostic component. A deep reinforcement learning algorithm will enable communication
between the VCA and the radiologist. Lastly, a DL-based segmentation component will, on the fly, enable the
VCA to derive and visualize quantitative measures (HU statistics, volume, long/short axes lengths, etc.) and
overlay them along with the tumor classification label (benign/malignant) and its probability in real time. Aim 3:
To evaluate the efficacy of the proposed VCA via lung cancer screening experiments involving six radiologists
from two institutes (University of Pennsylvania and NIH) at different expertise levels.
The proposed VCA is a first-of-a-kind-system to exploit the synergy between powerful DL technology and
experts (humans) to attempt boost clinical diagnostic performance of radiologists, unlike passive DL techniques
that learn from labeled data. The outcome of this research are expected to be transformative by providing deep
insights for re-designing current CAD systems to truly collaborate with radiologists, instead of acting as second
opinion tools for them or replacing them, and by ultimately further reducing lung cancer-related deaths.
项目概要
肺癌是美国男性和女性癌症死亡的最常见原因。
低剂量计算机断层扫描 (CT) 癌症筛查已被证明可以降低肺癌死亡率。
然而,当前的放射学实践仍然存在以下问题:(1) 肿瘤漏检率高;(2) 肺部不精确
基于人工智能 (AI) 的计算机辅助诊断 (CAD) 结节特征(恶性与良性)。
系统已帮助放射科医生适度降低肿瘤漏诊率,但尚未广泛推广
采用这种方式的主要原因有三个:缺乏效率、缺乏实时协作以及缺乏可解释性。
该提案的总体目标是创建以放射科医生为中心的人工智能算法
可解释和协作,并通过肺癌筛查证明其疗效的改善
这项工作的中心假设是创建一个基于人工智能的虚拟认知助手。
(VCA) 将更好地理解认知偏差,同时向放射科医生提供可解释的反馈
改善筛查体验,提高诊断准确性、可重复性和效率。
该提案的具体目标有三个:目标 1:开发一个提供眼动追踪功能的平台。
真实的放射学阅片室体验,同时提取放射科医生的注视模式,这将有利于。
解决放射科医生和 CAD 之间的真正合作问题将发挥作用。
不受任何限制(例如戴眼镜)的筛选,而他们的注视模式和其他人机
实时跟踪、处理和存储交互事件 目标 2:开发自动化的实时系统。
涉及开发的 VCA 和放射科医生的协作系统,以协同改进检测和
使用深度学习 (DL) 算法,VCA 将体现出强大的视觉注意力。
模型来表示放射科医生的注视、视觉搜索和注视模式,并将由检测组成
深度强化学习算法将实现通信。
最后,基于深度学习的分割组件将在运行中启用
VCA 导出并定量可视化测量值(HU 统计数据、体积、长/短轴长度等)和
将它们与肿瘤分类标签(良性/恶性)及其概率实时叠加。目标 3:
通过涉及六名放射科医生的肺癌筛查实验来评估拟议 VCA 的功效
来自两个不同专业水平的机构(宾夕法尼亚大学和美国国立卫生研究院)。
所提出的 VCA 是第一个利用强大的深度学习技术和
与被动深度学习技术不同,专家(人类)试图提高放射科医生的临床诊断性能
从标记数据中学习,这项研究的结果预计将通过提供深入的内容而具有变革性。
重新设计当前 CAD 系统以真正与放射科医生合作,而不是充当第二个的见解
为他们提供意见工具或取代他们,并最终进一步减少与肺癌相关的死亡。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models.
- DOI:10.1109/temc.2021.3106872
- 发表时间:2021-10
- 期刊:
- 影响因子:2.1
- 作者:Vu J;Nguyen BT;Bhusal B;Baraboo J;Rosenow J;Bagci U;Bright MG;Golestanirad L
- 通讯作者:Golestanirad L
Adipose Tissue Segmentation in Unlabeled Abdomen MRI using Cross Modality Domain Adaptation.
- DOI:10.1109/embc44109.2020.9176009
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Masoudi S;Anwar SM;Harmon SA;Choyke PL;Turkbey B;Bagci U
- 通讯作者:Bagci U
Multi-Contrast MRI Segmentation Trained on Synthetic Images.
- DOI:10.1109/embc48229.2022.9871119
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Deep Learning Based Staging of Bone Lesions From Computed Tomography Scans.
基于深度学习的计算机断层扫描骨病变分期。
- DOI:10.1109/access.2021.3074051
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Masoudi S;Mehralivand S;Harmon SA;Lay N;Lindenberg L;Mena E;Pinto PA;Citrin DE;Gulley JL;Wood BJ;Dahut WL;Madan RA;Bagci U;Choyke PL;Turkbey B
- 通讯作者:Turkbey B
A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics.
- DOI:10.21037/tlcr-21-44
- 发表时间:2021-03
- 期刊:
- 影响因子:4
- 作者:He B;Song Y;Wang L;Wang T;She Y;Hou L;Zhang L;Wu C;Babu BA;Bagci U;Waseem T;Yang M;Xie D;Chen C
- 通讯作者:Chen C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulas Bagci其他文献
Ulas Bagci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulas Bagci', 18)}}的其他基金
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
- 批准号:
10611212 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10431261 - 财政年份:2022
- 资助金额:
$ 44.75万 - 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10611468 - 财政年份:2022
- 资助金额:
$ 44.75万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10391173 - 财政年份:2020
- 资助金额:
$ 44.75万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10339620 - 财政年份:2020
- 资助金额:
$ 44.75万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10397701 - 财政年份:2020
- 资助金额:
$ 44.75万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10689657 - 财政年份:2020
- 资助金额:
$ 44.75万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Automating Assessment of Contextualization of Care During the Clinical Encounter
在临床遇到的情况下自动评估护理情境化
- 批准号:
10595446 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Achieving Model Fairness on Automatic Primary Open-angle Glaucoma Screening
实现自动原发性开角型青光眼筛查的模型公平性
- 批准号:
10726928 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别: