Identifying the pathways associated with bacterial antibiotic persistence within host tissues
确定与宿主组织内细菌抗生素持久性相关的途径
基本信息
- 批准号:10638788
- 负责人:
- 金额:$ 59.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-06 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsBacteriaBacterial GenesBacterial InfectionsBindingBiological AssayCell SeparationCell SurvivalCellsClinicalCritical PathwaysDevelopmentDoxycyclineDrug Metabolic DetoxicationDrug TargetingEnsureEnvironmentGene ExpressionGene Expression ProfileGenesGeneticGenetic EngineeringGenetic TranscriptionGrowthHeterogeneityHost DefenseHumanImmune responseIn VitroInfectionInvestigationKnowledgeMass Spectrum AnalysisMediatingModelingMusMutationNeutrophil InfiltrationNitric OxideNutrientPasteurella pseudotuberculosisPathway interactionsPatientsPhagocytesPharmaceutical PreparationsPopulationPositioning AttributePredispositionProteomeProteomicsPublic HealthRNAReactive Oxygen SpeciesRecurrenceRelapseReporterResidual stateRoleSpleenStressSurvivorsSystemSystemic infectionTestingTherapeuticTissuesTransgenic MiceTreatment EfficacyTreatment FailureValidationYersiniaYersinia infectionsantimicrobialbiological adaptation to stresscell motilitycostdrug discoveryeffective therapyextracellularhuman diseaseimprovedin vivointerestmembermonocytemouse modelneutrophilnovelpathogenic bacteriascreeningstressortooltranscriptome sequencingtreatment durationtreatment strategy
项目摘要
PROJECT SUMMARY
Residual subpopulations of antibiotic-susceptible bacteria can remain within host tissues following
antibiotic treatment. These surviving bacteria are called persister cells, which are transiently tolerant to high
levels of antibiotic, and can cause serious relapsing infection after treatment. Critically, current treatment
strategies do not target persisters. To fully eradicate all bacterial cells, treatments are prolonged, increasing
patient and clinical costs. Prolonged antibiotic exposure can promote antibiotic resistance, further emphasizing
the need to improve treatment efficacy. Improved treatment strategies would simultaneously target all
members of the bacterial population, including persisters. However, persisters have been primarily studied in
culture, and relevant persister cell-specific drug targets within host tissues are largely undefined. Bacteria
behave very differently in host tissues, where nutrient limitation and antimicrobial host defenses activate strong
stress response pathways in bacterial pathogens. We predict persisters utilize distinct, potentially novel,
survival strategies within the host environment.
To study bacterial antibiotic persistence within host tissues, we established a mouse model of
doxycycline treatment of Yersinia pseudotuberculosis splenic deep tissue infection. Doxycycline is an effective
treatment for human Yersinia infection, but requires 7 days continuous treatment, which has been incorporated
into our mouse model. Prior to antibiotic treatment, Y. pseudotuberculosis replicate to form clusters of
extracellular bacteria that directly interface with a layer of neutrophils that are, in turn, enveloped by a layer of
monocytes. In the initial 4h of doxycycline treatment, we observe a significant decrease in viable bacterial
numbers, which correlates with a wave of neutrophil infiltration into the spleen. However, a residual bacterial
subpopulation (~10%) remain in the spleen throughout the 7-day treatment. Bacterial cells resume growth and
cause lethality when antibiotic concentrations wane, defining these cells as persisters.
We hypothesize that interactions with neutrophils and monocytes predispose persisters to
survive antibiotic treatment, and prolonged antibiotic exposure promotes additional transcriptional
and genetic changes within persister cells. Utilizing our fluorescent reporter system to detect viable,
doxycycline-exposed bacteria within the mouse spleen, we will: 1) identify the transcriptional, proteomic, and
genetic changes specific to surviving bacteria within antibiotic-treated mice, 2) determine whether specific
bacterial targets are critical for antibiotic persistence in the host, and 3) determine if monocyte or neutrophil
interactions promote antibiotic persistence. We hypothesize activated neutrophils initially reduce the bacterial
burden, and we will determine if evasion of neutrophil-mediated killing promotes persister cell survival.
Identifying persister cell survival strategies within host tissues will provide critical information to advance the
field and enable the development of more efficacious therapeutic strategies against bacterial infections.
项目摘要
抗生素敏感细菌的残留亚群可以保留在宿主组织中
抗生素治疗。这些幸存的细菌称为持久细胞,它们瞬时耐受性
抗生素的水平,治疗后可能引起严重的复发感染。至关重要的是当前的治疗
策略不针对持久。为了完全根除所有细菌细胞,处理延长,增加
病人和临床费用。长时间的抗生素暴露可以促进抗生素耐药性,进一步强调
需要提高治疗功效。改进的治疗策略将同时针对所有
细菌人群的成员,包括持久。但是,言论主要是在研究
培养和相关的宿主组织中相关细胞特异性药物靶标在很大程度上是不确定的。细菌
在宿主组织中的表现差异很大,在宿主组织中,营养限制和抗菌宿主防御能力激活强大
细菌病原体中的应力反应途径。我们预测,persisters利用独特的,潜在的新颖,
主机环境中的生存策略。
为了研究宿主组织中的细菌抗生素持久性,我们建立了一个小鼠模型
强力霉素治疗耶尔森氏菌pseudotuberculosis脾脏深组织感染。强力霉素是有效的
人耶尔森氏症感染的治疗,但需要连续7天治疗,这已被纳入
进入我们的鼠标模型。在接受抗生素治疗之前,Y.假结核病复制以形成
细胞外细菌与一层中性粒细胞直接接触,这些中性粒细胞又被一层包裹
单核细胞。在强力霉素治疗的最初4H中,我们观察到可行细菌的显着降低
数字与脾脏中性粒细胞浸润有关。但是,残留细菌
在整个7天治疗过程中,子群(〜10%)仍保留在脾脏中。细菌细胞恢复生长和
当抗生素浓度减弱时会导致致死性,将这些细胞定义为持久性。
我们假设与中性粒细胞和单核细胞的相互作用倾向于
在抗生素治疗中生存,并长时间的抗生素暴露促进了其他转录
和遗传细胞内的遗传变化。利用我们的荧光记者系统来检测可行,
小鼠脾脏中暴露于强力霉素的细菌,我们将:1)识别转录,蛋白质组学和
抗生素处理的小鼠内存活细菌的遗传变化,2)确定是否具体
细菌靶标对于宿主中的抗生素持久性至关重要,3)确定单核细胞或中性粒细胞是否
相互作用促进抗生素持久性。我们假设活化的中性粒细胞最初减少细菌
负担,我们将确定逃避中性粒细胞介导的杀伤是否会促进持久的细胞存活。
确定宿主组织内的持久细胞生存策略将提供关键信息以促进
现场并实现针对细菌感染的更有效的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim Davis其他文献
Kim Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim Davis', 18)}}的其他基金
S. aureus virulence factor expression during kidney abscess formation
肾脓肿形成过程中金黄色葡萄球菌毒力因子的表达
- 批准号:
10610817 - 财政年份:2022
- 资助金额:
$ 59.06万 - 项目类别:
S. aureus virulence factor expression during kidney abscess formation
肾脓肿形成过程中金黄色葡萄球菌毒力因子的表达
- 批准号:
10370868 - 财政年份:2022
- 资助金额:
$ 59.06万 - 项目类别:
Contribution of innate immune cells in promoting antibiotic tolerance
先天免疫细胞在促进抗生素耐受性方面的贡献
- 批准号:
10410551 - 财政年份:2021
- 资助金额:
$ 59.06万 - 项目类别:
Contribution of innate immune cells in promoting antibiotic tolerance
先天免疫细胞在促进抗生素耐受性方面的贡献
- 批准号:
10300725 - 财政年份:2021
- 资助金额:
$ 59.06万 - 项目类别:
Community behavior of Yersinia pseudotuberculosis within microcolonies
小菌落内假结核耶尔森菌的群落行为
- 批准号:
9088649 - 财政年份:2017
- 资助金额:
$ 59.06万 - 项目类别:
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
- 批准号:42307038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
- 批准号:32301448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 59.06万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 59.06万 - 项目类别:
Longitudinal microbiome-host interactions and clinical outcomes in drug-resistant tuberculosis patients
耐药结核病患者的纵向微生物组-宿主相互作用和临床结果
- 批准号:
10672997 - 财政年份:2022
- 资助金额:
$ 59.06万 - 项目类别:
Pilot study of linezolid for early syphilis treatment
利奈唑胺治疗早期梅毒的初步研究
- 批准号:
10575509 - 财政年份:2022
- 资助金额:
$ 59.06万 - 项目类别:
A novel antimicrobial resistance mechanism for Borrelia burgdorferi
伯氏疏螺旋体的新型抗菌药物耐药机制
- 批准号:
10425475 - 财政年份:2022
- 资助金额:
$ 59.06万 - 项目类别: