Synapse Engulfment by Oligodendrocyte Precursor Cells: A New Mechanism of Circuit Refinement in the Developing Brain
少突胶质细胞前体细胞突触吞噬:发育中大脑中电路细化的新机制
基本信息
- 批准号:10637731
- 负责人:
- 金额:$ 63.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AblationAgeAnimal BehaviorAnimalsAstrocytesAxonBehavioral AssayBiologicalBiological ModelsBrainBrain DiseasesCRISPR screenCell physiologyCellsChildComplexDataDevelopmentDiseaseEconomic BurdenExcisionEyeFoundationsFutureGoalsHealthHealthcareHealthcare SystemsHumanImpairmentIndividualLifeLightLinkLongevityMediatingMicrogliaModernizationMolecularMonitorMusNatureNeurobiologyNeurodevelopmental DisorderNeurogliaNeurologicNeuronsNeurophysiology - biologic functionNeurosciencesOligodendrogliaPathway interactionsPhagocytesPhagocytosisPhasePhysiologicalPlayPopulationPrevalenceProcessPropertyRoleRouteSensoryShapesSymptomsSynapsesTechniquesTestingTherapeuticTimeTransgenic OrganismsUnited StatesViral GenesVisualVisual CortexVisual SystemWorkautism spectrum disorderbrain cellcare burdencritical periodexperienceexperimental studyin vivoinsightinterdisciplinary approachmultidisciplinarymyelinationnerve stem cellneural circuitnovelnovel therapeutic interventionoligodendrocyte precursoroptogeneticspharmacologicpostnatalpostnatal developmentprecursor cellreceptorresponsespatiotemporalsymptomatic improvementtargeted treatmenttherapy developmenttooltranscriptomicstreatment strategytwo photon microscopy
项目摘要
PROJECT SUMMARY
The establishment of synaptic connectivity during brain development involves the initial formation of an
overabundance of synapses followed by a refinement process in which some of these synapses are maintained
while others are eliminated. The precise elimination of excess synapses is driven by sensory experience during
critical periods of early postnatal life. Impairments in sensory-dependent synapse elimination contribute to
neurodevelopmental disorders such as autism, underscoring the importance of this process for the proper
development and function of neural circuits. However, although neurodevelopmental disorders are growing in
prevalence at an alarming rate, therapeutic strategies for treating them are scarce in part due to a lack of insight
into the factors that control synapse elimination in the healthy brain. A key goal of this proposal is to uncover
novel cellular and molecular mechanisms underlying the elimination of synapses downstream of experience,
thereby laying the groundwork for new therapeutic approaches to treat disorders of postnatal brain development.
Work in the visual system of the mouse has revealed that non-neuronal brain cells, predominantly
microglia and astrocytes, coordinate synapse elimination before the onset of visual experience by phagocytosing
excess synapses. However, data suggest that these cells may not be major regulators of synapse elimination
during late phases of development that are coordinated by visual experience. On the contrary, we recently
discovered a key role for a less well understood class of glia, oligodendrocyte precursor cells (OPCs), in
eliminating synapses in response to experience through synaptic phagocytosis. This result is consistent with
wide-spread speculation that OPCs, while predominantly appreciated for their differentiation into mature
oligodendrocytes, play key roles in the brain beyond myelination. In line with this possibility, our data suggest
that OPCs are essential for shaping functional neural circuits during the maturation of the brain.
In this application, we propose a multi-disciplinary strategy to test the hypothesis that the engulfment of
synapses by OPCs is a core mechanism underlying the sensory-dependent elimination of functional synapses
in the developing brain. In Aim 1, we will employ viral and transgenic tools to characterize the spatio-temporal
dynamics and activity-dependent basis of synaptic engulfment by OPCs using in vivo two-photon microscopy. In
Aim 2, we will apply physiological and behavioral assays to determine the consequences of synaptic engulfment
by OPCs on brain function in the intact animal. In Aim 3, we will merge unbiased transcriptomic and CRISPR-
based screening techniques with a candidate-based approach focused on the phagocytic receptor Lrp1 to reveal
molecular pathways underlying the engulfment of synapses by OPCs. Altogether, we expect these studies to
establish synapse engulfment by OPCs as a new mechanism linking experience to neural circuit development,
and to lay the foundation for future studies geared toward modifying OPC function as a potential therapeutic
strategy for treating neurodevelopmental disorders.
项目摘要
大脑发育过程中建立突触连通性涉及的初始形成
突触过多,然后进行完善过程,其中一些突触被维持
而其他人则被淘汰。多余的突触的精确消除是由感官体验驱动的
早期产后生活的关键时期。感觉依赖性突触消除的损害有助于
神经发育障碍,例如自闭症,强调了此过程的重要性
神经回路的发展和功能。但是,尽管神经发育障碍正在增长
以惊人的速度患病率,治疗治疗的治疗策略很少,部分原因是缺乏洞察力
进入控制健康大脑中消除突触的因素。该提议的关键目标是发现
消除经验下游突触的新型细胞和分子机制,
从而为治疗产后脑发育障碍的新治疗方法奠定了基础。
在小鼠视觉系统中的工作表明,非神经元细胞主要是
小胶质细胞和星形胶质细胞,在视觉体验开始之前通过吞噬细胞的坐标突触消除
多余的突触。但是,数据表明这些细胞可能不是突触消除的主要调节剂
在后期的开发阶段,通过视觉体验协调。相反,我们最近
发现了知识不足类的神经胶质细胞,少突胶质前体细胞(OPC)的关键作用,
通过突触吞噬作用消除突触以响应经验。这个结果与
广泛的猜测OPC,而主要因其分化为成熟的猜测
少突胶质细胞,在髓鞘中扮演关键角色。根据这种可能性,我们的数据表明
OPC对于在大脑成熟过程中塑造功能性神经回路至关重要。
在此应用中,我们提出了一种多学科策略,以检验以下假设。
OPC突触是一种核心机制,是感觉依赖性消除功能突触的基础机制
在发展中的大脑中。在AIM 1中,我们将使用病毒和转基因工具来表征时空
OPC使用体内两光子显微镜的OPC突触吞噬的动力学和活动依赖性基础。在
AIM 2,我们将应用生理和行为分析来确定突触吞噬的后果
通过OPC对完整动物的脑功能。在AIM 3中,我们将合并公正的转录组和CRISPR-
采用基于候选的方法的基于吞噬受体LRP1的筛查技术揭示
OPC吞没突触的基础的分子途径。总之,我们希望这些研究能够
建立OPC的突触吞没是一种将经验与神经回路发展联系起来的新机制,
并为未来的研究奠定基础,旨在修改OPC功能作为潜在的治疗
治疗神经发育障碍的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucas M Cheadle其他文献
Lucas M Cheadle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucas M Cheadle', 18)}}的其他基金
Neuroimmunological insights into brain development and dysfunction: an integrative approach focused on microglial dynamics
对大脑发育和功能障碍的神经免疫学见解:专注于小胶质细胞动力学的综合方法
- 批准号:
10472831 - 财政年份:2022
- 资助金额:
$ 63.68万 - 项目类别:
Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
- 批准号:
10366078 - 财政年份:2019
- 资助金额:
$ 63.68万 - 项目类别:
Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
- 批准号:
10191343 - 财政年份:2019
- 资助金额:
$ 63.68万 - 项目类别:
Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
- 批准号:
9754316 - 财政年份:2019
- 资助金额:
$ 63.68万 - 项目类别:
Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
- 批准号:
9893906 - 财政年份:2019
- 资助金额:
$ 63.68万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 63.68万 - 项目类别:
Molecular and functional characterization of type I and II vestibular hair cells in adult mice
成年小鼠 I 型和 II 型前庭毛细胞的分子和功能特征
- 批准号:
10749188 - 财政年份:2023
- 资助金额:
$ 63.68万 - 项目类别:
Preclinical assessment of a novel systemic drug candidate for osteoarthritic pain
治疗骨关节炎疼痛的新型全身候选药物的临床前评估
- 批准号:
10642544 - 财政年份:2023
- 资助金额:
$ 63.68万 - 项目类别:
Deteriming the Role of Caspase Cleaved Tau in Alzheimer’s Disease
确定 Caspase 切割的 Tau 在阿尔茨海默病中的作用
- 批准号:
10386580 - 财政年份:2022
- 资助金额:
$ 63.68万 - 项目类别:
The neuromolecular basis of adaptation to bond loss
适应键损失的神经分子基础
- 批准号:
10374344 - 财政年份:2022
- 资助金额:
$ 63.68万 - 项目类别: