Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
基本信息
- 批准号:10191343
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-14 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressBindingBioinformaticsBiological ProcessBrainCRISPR/Cas technologyCell NucleusCellsComplementComplexCuesCytokine ReceptorsCytokine SignalingDataDendritic SpinesDevelopmentDiseaseElectrophysiology (science)EnvironmentEnvironmental Risk FactorFoundationsFunctional disorderGene ExpressionGenesGenetic TranscriptionGoalsImageImmersionImmuneImpairmentInflammatoryInstitutionIntellectual functioning disabilityInterdisciplinary StudyKnowledgeLeadLearningLifeLigandsMediatingMentorshipMethodsMicrogliaModelingMolecularMusNatureNeurodevelopmental DisorderNeuronsNeurophysiology - biologic functionPhagocytesPhasePhotic StimulationPositioning AttributeProcessResearchResolutionRoleScientistSensorySignal PathwaySignal TransductionSliceStructureSynapsesTechniquesTestingTherapeuticTrainingTraining ActivityVertebral columnViralVisualWorkcareercell typecourse developmentcritical periodcytokineexcitatory neuronexperienceexperimental studygain of functiongene inductionhuman diseaseimmune activationin vivoinnovationinsightloss of functionmedical schoolsmouse geneticsmouse modelneural circuitneurodevelopmentnovelpostnatalpostnatal developmentpostnatal periodprogramspsychiatric disabilityrelating to nervous systemresponsesensory inputsingle cell sequencingsingle-cell RNA sequencingskillstranscriptomicstwo-photon
项目摘要
During postnatal brain development, newly assembled neural circuits are refined through the strengthening of a subset of synaptic connections and the concurrent elimination of others. This process of synaptic refinement is first coordinated by intrinsically generated neural activity early in life and then driven by sensory experience during a later phase of postnatal development. Impairments in sensory-dependent refinement are thought to contribute to a heterogeneous array of neurodevelopmental disorders, consistent with the contribution of environmental risk factors, such as immune challenge, to their pathophysiology. Yet, therapeutic strategies aimed at correcting such impairments have been limited by a fundamental lack of insight into the molecular and cellular mechanisms through which sensory input refines developing circuits. The key focus of the proposed research is to obtain a more comprehensive understanding of the basic cellular and molecular mechanisms by which sensory experience refines synaptic connections in the course of development, and to determine how impairments in these mechanisms may contribute to neurodevelopmental disease. In preliminary studies, the applicant applied newly developed single-cell transcriptomic methods to identify Fn14 as a gene that is transcriptionally induced by visual experience in excitatory neurons and encodes a cytokine receptor that is required for sensory-dependent refinement in the developing brain. This proposal contains a comprehensive training and research plan to build upon these findings by addressing the remaining gaps in knowledge experimentally in the short-term, and by facilitating the establishment of an innovative and multidisciplinary research program focused on addressing these questions in the long-term. In Aim 1, the applicant will learn and apply specialized acute slice electrophysiology techniques to test the hypothesis that TWEAK, the pro-inflammatory cytokine ligand of Fn14, is necessary and sufficient to drive sensory-dependent refinement via a microglia-to-neuron signaling axis. In Aim 2, the applicant will combine electrophysiology with newly learned methods in bioinformatics to determine whether heightened TWEAK/Fn14 signaling contributes to excessive synaptic refinement in the maternal immune activation (MIA) mouse model of aberrant brain development. In Aim 3, the applicant will test the hypothesis that TWEAK/Fn14 signaling mediates functional refinement by promoting the conversion of immature synaptic spines to mature spines. These technical training activities will be augmented by focused mentorship from several highly successful scientists who are committed to aiding in the applicant's acquisition of professional and intellectual skills in the highly energetic and collaborative training environment at Harvard Medical School. These activities are expected to facilitate the successful transition of the applicant into an independent research position at an academic institution.
在产后大脑发育期间,通过加强突触连接的子集并同时消除其他人来完善新组装的神经回路。这种突触改进的过程首先是由生命早期本质上产生的神经活动协调的,然后在产后发育的后期受感官体验的驱动。人们认为,依赖感觉依赖性细化的损害会导致各种神经发育障碍,这与环境风险因素(例如免疫挑战)对其病理生理学的贡献一致。然而,旨在纠正此类障碍的治疗策略受到对分子和细胞机制的根本性缺乏洞察力的限制。拟议的研究的重点是对感觉体验在发育过程中优化突触连接的基本细胞和分子机制有更全面的了解,并确定这些机制的损害如何有助于神经发育疾病。在初步研究中,申请人采用了新开发的单细胞转录组方法来识别FN14为一种基因,它是由兴奋性神经元中视觉经验引起的转录诱导的基因,并编码了一种细胞因子受体,这是发展脑中感觉依赖性精致所需的细胞因子受体。该提案包含一项全面的培训和研究计划,通过在短期内通过实验中解决知识的剩余差距,并促进建立创新的和多学科的研究计划,以长期解决这些问题。在AIM 1中,申请人将学习和应用专业的急性切片电生理技术来测试FN14的促炎性细胞因子配体Tweak是必要且足够的,足以通过微胶质细胞 - 神经元信号信号轴进行依赖感官依赖性的细化。在AIM 2中,申请人将将电生理学与新学习的生物信息学方法相结合,以确定增强的调整/FN14信号是否有助于异常脑发育的母体免疫激活(MIA)小鼠模型中过度突触完善。在AIM 3中,申请人将检验以下假设:调整/FN14信号传导通过促进未成熟的突触刺向成熟棘的转化来介导功能性改进。这些技术培训活动将通过几位非常成功的科学家的重点指导来增强,他们致力于协助申请人在哈佛医学院的高度活力和协作的培训环境中获得专业和知识技能。预计这些活动将促进申请人成功地过渡到学术机构的独立研究职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucas M Cheadle其他文献
Lucas M Cheadle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucas M Cheadle', 18)}}的其他基金
Synapse Engulfment by Oligodendrocyte Precursor Cells: A New Mechanism of Circuit Refinement in the Developing Brain
少突胶质细胞前体细胞突触吞噬:发育中大脑中电路细化的新机制
- 批准号:
10637731 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Neuroimmunological insights into brain development and dysfunction: an integrative approach focused on microglial dynamics
对大脑发育和功能障碍的神经免疫学见解:专注于小胶质细胞动力学的综合方法
- 批准号:
10472831 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
- 批准号:
10366078 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
- 批准号:
9754316 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Intercellular TWEAK/Fn14 Cytokine Signaling in Sensory-Dependent Circuit Refinement
感觉依赖性电路细化中的细胞间 TWEAK/Fn14 细胞因子信号转导
- 批准号:
9893906 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Identifying and modeling immune correlates of protection against congenital CMV transmission after primary maternal infection
原发性母体感染后预防先天性巨细胞病毒传播的免疫相关性的识别和建模
- 批准号:
10677439 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
- 批准号:
10677051 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: