Multiscale hydrogel biomaterials-enabled 3D modeling of cancer drug resistance

基于多尺度水凝胶生物材料的癌症耐药性 3D 建模

基本信息

  • 批准号:
    10639167
  • 负责人:
  • 金额:
    $ 44.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Developing new anticancer drugs has been very slow and costly. A major reason is that the commonly used 2D cancer cells and animal models for drug discovery today are very different from the 3D tumors in human patients. Lately, 3D tumor models have been made by suspending tumor cells in medium to form multicellular spheroids/organoids, growing the cells in hydrogels/scaffolds, and incorporating blood vessels. However, little has been done to build 3D vascularized tumor models for recapitulating the drug resistance in patient tumors. We recently developed a novel multiscale hydrogel biomaterials-based bottom-up strategy to control the formation of the two distinct tissue domains in tumors - a 3D vascular network and an avascular/intervascular tumor cell-containing region, for studying cancer drug resistance. This is achieved by producing 3D avascular micro-tumors (µtumors) first and using them as the building blocks for assembling with endothelial cells (ECs) under dynamic perfusion culture, to form 3D vascularized tumors with a complex 3D vascular network that mimics the vascular-intervascular organization of in vivo tumors. Importantly, our data show quantitatively for the first time that, the 3D vascularized tumors are much more drug resistant than 3D avascular µtumors, indicating tumor blood vessels not only transport nutrients/oxygen but also enhance cancer drug resistance. However, no 3D vascularized tumor was built in vitro with cells differentiated from cancer stem cells (CSCs) for drug discovery, although the rare CSCs have been posited to possess the exclusive ability of tumorigenesis and be responsible for the many failures of cancer chemotherapy due to their high drug resistance. Moreover, no CSCs isolated with contemporary methods are shown to differentiate into a type of cells that are not in tumors. This cross-tissue multilineage differentiation is a key property of stem cells (e.g., adipose-derived stem cells can differentiate into osteoblasts that are absent in fat). Thus, a method for isolating true CSCs is in need. We recently developed a novel core-shell hydrogel biomaterials-based approach for isolating CSCs by culturing one (1) single cancer cell (from a cell line) in the nanoliter hydrogel core of microcapsules that mimic pre-hatching embryos, where totipotent-pluripotent stem cells are cultured in human body. Importantly, the isolated CSCs are capable of endothelial, cardiac, neural, and osteogenic differentiations and highly tumorigenic, metastatic, and drug resistant, indicating the cells isolated with our bioinspired 1-cell culture are truly CSCs. In this project, we propose to further develop the novel bioinspired approach for isolating CSCs from breast tumors of human patients. In view of the highly drug resistant nature of the CSCs isolated with our bioinspired 1-cell culture and their ability of differentiating into ECs in vivo that may reduce patient survival, we further propose to use the CSC-derived ECs and cancer cells for building 3D vascularized tumors, to better model the drug resistance in patient tumors than existing 3D vascularized tumors made using non-CSC cancer cells and non-CSC (and often non-cancer-related) ECs (e.g., human umbilical vein endothelial cells known as HUVECs).
项目摘要/摘要 开发新的抗癌药物非常缓慢且昂贵。主要原因是常用 当今的2D癌细胞和动物模型与人类的3D肿瘤大不相同 患者。最近,已经通过将肿瘤细胞悬浮在培养基中形成多细胞而制作了3D肿瘤模型 球体/器官,在水凝胶/支架中生长细胞,并增加血管。但是,很少 已经进行了建立3D血管化肿瘤模型,以概括患者肿瘤中的耐药性。 我们最近开发了一种新型的多尺度水凝胶生物材料的自下而上策略,以控制 肿瘤中两个不同的组织结构域的形成 - 一个3D血管网络和无血管/静止 含肿瘤细胞的区域,用于研究癌症耐药性。这是通过产生3D血管来实现的 首先,微肿瘤(µTumors),并将它们用作组装内皮细胞(EC)的构件 在动态灌注培养物下,与复杂的3D血管网络形成3D血管化肿瘤 模仿体内肿瘤的血管间血管组织。重要的是,我们的数据定量显示 3D血管化肿瘤第一次比3D血管µTumors更具药物抗药性, 表明肿瘤血管不仅输送养分/氧气,还可以增强癌症耐药性。 然而,在体外没有3D血管化肿瘤,与癌细胞分化的细胞(CSC)建立 对于药物发现,尽管稀有的CSC已被分配为具有肿瘤发生的独家能力 并因其耐药性高而负责癌症化学疗法的许多失败。而且, 没有证明使用现代方法隔离的CSC可以分化为不在 肿瘤。这种跨组织多曲线分化是干细胞的关键特性(例如,脂肪衍生的茎 细胞可以区分脂肪中不存在的成骨细胞。这是需要一种隔离真正CSC的方法。 我们最近开发了一种新型的核壳水凝胶生物材料方法,用于通过 培养一个(1)单个癌细胞(来自细胞系),在微胶囊的纳米素水凝胶核心中 预录胚,其中整整素的干细胞在人体中培养。重要的是, 孤立的CSC能够内皮,心脏,神经和成骨分化和高度肿瘤性, 转移性和耐药性,表明用我们的生物启发的1细胞培养分离的细胞是真正的CSC。 在这个项目中,我们建议进一步开发新型的生物启发方法,以使CSC与乳房隔离 人类患者的肿瘤。鉴于与我们的生物启发的CSC的高度耐药性 1细胞培养及其在体内区分EC的能力,从而可以降低患者的生存,我们进一步 建议使用CSC衍生的EC和癌细胞来构建3D血管化肿瘤,以更好地建模 患者肿瘤中的耐药性比使用非CSC癌细胞制成的现有3D血管化肿瘤和 非CSC(通常是非癌症相关的)EC(例如,被称为HUVEC的人脐静脉内皮细胞)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Xiaoming He的其他基金

Nanotechnology for targeted therapy and fundamental understanding oftherapeutic resistance in triple negative breast cancer
用于靶向治疗的纳米技术和对三阴性乳腺癌治疗耐药性的基本了解
  • 批准号:
    10593921
    10593921
  • 财政年份:
    2020
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Nanotechnology for targeted therapy and fundamental understanding oftherapeutic resistance in triple negative breast cancer
用于靶向治疗的纳米技术和对三阴性乳腺癌治疗耐药性的基本了解
  • 批准号:
    10376777
    10376777
  • 财政年份:
    2020
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
  • 批准号:
    10063652
    10063652
  • 财政年份:
    2018
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Investigate the mechanisms underlying microRNA-146a activity in regulation of foreign body response to biomaterials
研究 microRNA-146a 活性调节生物材料异物反应的机制
  • 批准号:
    10522163
    10522163
  • 财政年份:
    2017
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Investigate the mechanisms underlying microRNA-146a activity in regulation of foreign body response to biomaterials
研究 microRNA-146a 活性调节生物材料异物反应的机制
  • 批准号:
    10641032
    10641032
  • 财政年份:
    2017
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
  • 批准号:
    9307738
    9307738
  • 财政年份:
    2016
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
  • 批准号:
    9193391
    9193391
  • 财政年份:
    2016
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
  • 批准号:
    8050447
    8050447
  • 财政年份:
    2011
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
  • 批准号:
    8325224
    8325224
  • 财政年份:
    2011
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
  • 批准号:
    8600270
    8600270
  • 财政年份:
    2011
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:

相似国自然基金

基于腔光机械效应的石墨烯光纤加速度计研究
  • 批准号:
    62305039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
  • 批准号:
    52305621
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
  • 批准号:
    52308484
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
  • 批准号:
    52305047
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
  • 批准号:
    62305269
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
  • 批准号:
    10645610
    10645610
  • 财政年份:
    2023
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Characterizing chemical threat agent exposures using a lung-on-a-chip platform and multi-omic analysis of common pathophysiological mechanisms
使用芯片肺平台和常见病理生理机制的多组学分析来表征化学威胁剂暴露
  • 批准号:
    10708553
    10708553
  • 财政年份:
    2023
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
  • 批准号:
    10649994
    10649994
  • 财政年份:
    2023
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别:
Imaging Cerebral Small Vessels in Vascular Cognitive Impairment and Dementia (VCID)
血管性认知障碍和痴呆 (VCID) 中的脑小血管成像
  • 批准号:
    10745164
    10745164
  • 财政年份:
    2023
  • 资助金额:
    $ 44.03万
    $ 44.03万
  • 项目类别: