Neural activity and circuitry-mediated hippocampal stress responses
神经活动和电路介导的海马应激反应
基本信息
- 批准号:10455684
- 负责人:
- 金额:$ 9.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-22 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnatomyAnimal ModelAntidepressive AgentsAnxietyAreaBehaviorBehavioralBrainCellsChronicChronic stressClinicalCognitionComplexCytoplasmic GranulesDataDevelopmentDiseaseDorsalFunctional disorderGene ExpressionGenesGenetic TranscriptionGoalsHippocampus (Brain)ImpairmentKnowledgeLifeLinkMajor Depressive DisorderMapsMediatingMemoryMentorsMolecularNeurobiologyNeuronsNewborn InfantPatternPersonsPhasePhenotypePre-Clinical ModelProductionProductivityPropertyPublicationsRabies virusRoleSignal PathwaySourceStreamStressSynapsesSynaptic plasticityTechnologyTestingTherapeuticTransgenic Miceantidepressant effectbehavioral phenotypingbiological adaptation to stresscell typedentate gyrusdepressed patientdepression modeldepressive symptomsdisabilityeffective therapyexcitatory neuronexperienceimprovedmolecular phenotypenetwork modelsneurogenesisnew therapeutic targetnewborn neuronpresynapticpreventrabies viral tracingreceptorrelating to nervous systemresilienceresponseside effectsocialtherapeutic targettranscriptomics
项目摘要
Project Summary/Abstract
Major depressive disorder (MDD) is a leading cause of disability and lost productivity, but we do not know its
underlying causes, nor do we have adequate treatments. Development of more effective therapies will require
better understanding of the cellular and molecular mechanisms of antidepressants (AD). Newly generated
(immature) neurons within the dentate gyrus (DG) have been linked to AD action in addition to their association
with hippocampus-dependent cognition, pattern separation, social memory, and stress-induced anxiety.
Increased numbers of newborn DG neurons are associated with improved hippocampal function, while
decreased numbers are associated with impaired hippocampal function. Moreover, my recent publication showed
that suppressing excitability of newborn neurons without altering neuronal number leads to MDD-related
phenotypes and abolishes AD effects. Conversely, enhancing activity of immature neurons without altering
neurogenesis is sufficient to alleviate effects of unpredictable chronic mild stress (uCMS), a well-validated, widely
used model of depression. Since newborn neurons form synapses more readily, are more excitable, and have
greater synaptic plasticity, understanding the complex effects of neurogenesis on behavior requires knowledge
of the synaptic connectivity of newborn neurons, the level of DG activity, the information streams within the DG,
and how these properties are changed by experience. Thus, I propose to establish an input-defined circuit map
of mature and immature DG neurons, and to identify the changes in this map, together with activity-dependent
changes in transcription, in the context of AD treatment and uCMS. In Aim 1, I will establish a presynaptic input
map of distinctly dorsal-ventral, mature and immature DG neurons in everyday life by combining transgenic
mouse technology with monosynaptic rabies virus retrograde tracing in the intact brain. Then, I will test the impact
of AD treatment and chronic chemogenetic neuronal silencing on these anatomically identified circuits. In Aim 2,
I will examine the effects of uCMS, which produces MDD-related behavioral phenotypes, with and without chronic
AD treatment and with acute chemogenetic neuronal activation on DG circuitry. In both Aims, I also will examine
synaptic, molecular and behavioral changes, and activity-dependent single-cell transcriptomics. By combining
gene expression data and DG connectivity with behavioral phenotypes in the light of changes produced by
uCMS, AD treatment and chemogenetic manipulations, I will be able to construct a biologically relevant DG
network model that can be used to test functional hypotheses, including dorsal-ventral DG dichotomy. Studying
chronic AD treatment and acute/chronic chemogenetic manipulations also will be valuable for identifying
signaling pathways underlying AD action, especially fast-acting ADs. Development of this DG network model will
help to clarify the critical role of the DG and of neurogenesis in MDD-related phenotypes and AD action.
项目概要/摘要
重度抑郁症 (MDD) 是导致残疾和生产力下降的主要原因,但我们不知道其具体原因
根本原因,我们也没有足够的治疗方法。开发更有效的疗法需要
更好地了解抗抑郁药(AD)的细胞和分子机制。新生成的
齿状回 (DG) 内的(未成熟)神经元除了与 AD 相关外,还与 AD 作用有关
具有海马体依赖性认知、模式分离、社会记忆和压力引起的焦虑。
新生 DG 神经元数量的增加与海马功能的改善相关,而
数量减少与海马功能受损有关。此外,我最近发表的文章表明
抑制新生神经元的兴奋性而不改变神经元数量会导致MDD相关
表型并消除 AD 效应。相反,增强未成熟神经元的活性而不改变
神经发生足以减轻不可预测的慢性轻度应激(uCMS)的影响,这是一种经过充分验证的、广泛的
使用抑郁症模型。由于新生神经元更容易形成突触,更容易兴奋,并且具有
更大的突触可塑性,了解神经发生对行为的复杂影响需要知识
新生神经元的突触连接、DG 活动水平、DG 内的信息流,
以及这些属性如何因经验而改变。因此,我建议建立一个输入定义的电路图
成熟和未成熟的 DG 神经元,并识别该图谱中的变化以及活动依赖性
AD 治疗和 uCMS 背景下转录的变化。在目标 1 中,我将建立一个突触前输入
通过结合转基因技术绘制日常生活中明显背腹、成熟和未成熟 DG 神经元的图
使用单突触狂犬病病毒在完整大脑中逆行追踪的小鼠技术。那么我来测试一下效果
AD 治疗和慢性化学遗传学神经元沉默对这些解剖学上确定的回路的影响。在目标 2 中,
我将研究 uCMS 的影响,它会产生与 MDD 相关的行为表型,无论是否患有慢性病
AD 治疗和 DG 电路上的急性化学遗传学神经元激活。在这两个目标中,我还将研究
突触、分子和行为变化以及活动依赖性单细胞转录组学。通过结合
基因表达数据和 DG 与行为表型的连接,根据所产生的变化
uCMS、AD 治疗和化学遗传学操作,我将能够构建生物学相关的 DG
可用于测试功能假设的网络模型,包括背腹 DG 二分法。学习中
慢性 AD 治疗和急性/慢性化学遗传学操作对于识别
AD 作用的信号通路,尤其是速效 AD。该 DG 网络模型的开发将
有助于阐明 DG 和神经发生在 MDD 相关表型和 AD 作用中的关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elif Tunc-Ozcan其他文献
Elif Tunc-Ozcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elif Tunc-Ozcan', 18)}}的其他基金
Neural activity and circuitry-mediated hippocampal stress responses
神经活动和电路介导的海马应激反应
- 批准号:
10903002 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
Neural activity and circuitry-mediated hippocampal stress responses
神经活动和电路介导的海马应激反应
- 批准号:
10301288 - 财政年份:2021
- 资助金额:
$ 9.87万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
- 批准号:
10717223 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
Circadian control of neuroinflammation after spinal cord injury
脊髓损伤后神经炎症的昼夜节律控制
- 批准号:
10639178 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别: