Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
基本信息
- 批准号:10453927
- 负责人:
- 金额:$ 60.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAdoptionAreaArizonaAttentionBiological MarkersBiomedical EngineeringBiopsyBreathingCaliforniaCellsCessation of lifeCharacteristicsCirrhosisClassificationClinicClinicalDataDetectionDevelopmentDiagnosisDiseaseFatty LiverFatty acid glycerol estersFibrosisFinancial compensationFutureGoalsHealth Care CostsHepaticImage EnhancementImaging TechniquesInflammationInterdisciplinary StudyInterobserver VariabilityIron OverloadJointsLabelLeadLifeLiverLiver FailureLiver FibrosisLiver parenchymaLos AngelesMRI ScansMagnetic ResonanceMagnetic Resonance ElastographyMagnetic Resonance ImagingMapsMeasuresMedical ImagingModelingMonitorMorbidity - disease rateMorphologic artifactsMotionOutcomePatientsPerformancePerfusionPhysicsProtocols documentationProtonsROC CurveRadialReproducibilityResearchRisk FactorsSampling ErrorsScanningSchemeSignal TransductionStagingTechniquesTechnologyTestingTimeTissuesTrainingUncertaintyUniversitiesValidationWaterbasechronic liver diseasecontrast enhanceddeep learningdeep learning modeldensitydisease classificationelastographyhepatocyte injuryimage processingimprovedlearning strategyliver biopsyliver inflammationmagnetic resonance imaging biomarkernew technologynon-alcoholic fatty livernon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnovel therapeuticsprospectiveprospective testreconstructionsensorsimple steatosistreatment response
项目摘要
PROJECT SUMMARY
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the U.S. and ranges
from simple fatty liver (or non-alcoholic fatty liver, NAFL) to the progressive form, non-alcoholic steatohepatitis
(NASH). About 20-30% of subjects with NAFL develop NASH, which is caused by hepatocyte injury, hepatic
inflammation, and resultant hepatic fibrosis. NASH can lead to life-threatening conditions, but is difficult to
diagnose at early stages. Liver biopsy is the current standard to diagnose NAFL/NASH, but biopsy is invasive,
has associated morbidity, and is limited by sampling errors and inter-observer variability. Many patients
present with later stage NASH, adversely impacting outcomes and healthcare costs, which are estimated at
$32 billion annually in the U.S. Magnetic resonance imaging (MRI), including elastography (MRE), is a
technology that can non-invasively quantify hepatic fat (MRI proton-density fat fraction), iron overload (MRI
R2*), and fibrosis (MRE stiffness). However, current liver MRI is challenged by motion artifacts and incomplete
signal models, which can compromise the accuracy and reproducibility of the quantitative parameters derived
from them. In addition, early tissue changes associated with NASH are not adequately characterized using
conventional MRI. The common requirements of breath-holding and long protocols also severely limit the
adoption of liver MRI in the clinic. Furthermore, the present clinical interpretation of MRI has limited ability to
distinguish NASH from NAFL. The research teams at the University of California Los Angeles, University of
Arizona, and Siemens have been leading the development of motion-robust radial MRI to quantify hepatic
PDFF and R2*, T2 and T1, perfusion, and stiffness. The Siemens team has also developed deep learning
methods for medical image processing and disease detection and classification. In this bioengineering
research partnership project, the multi-disciplinary research team will investigate four aims: (1) Develop a
robust motion compensation framework for free-breathing multi-parametric quantitative radial liver MRI; (2)
Accelerate quantitative liver MRI scans through combined acquisition and joint modeling of multiple
parameters, data undersampling, and deep learning-based reconstruction and quantification; (3) Develop deep
learning models to accurately classify NAFL versus NASH and measure the degree of fibrosis based on
quantitative MRI; (4) Prospectively assess the new quantitative MRI and deep learning technologies for
classifying NAFL versus NASH and measuring fibrosis in patients, with respect to liver biopsy. The new free-
breathing quantitative MRI and deep learning technologies developed in this project will accurately classify
NAFL versus NASH and measure fibrosis using data from the entire liver and thus help to avoid liver biopsy,
allow monitoring of treatment responses, and accelerate the development and implementation of new
therapies.
项目摘要
非酒精性脂肪肝病(NAFLD)是美国最常见的慢性肝病和范围
从简单的脂肪肝(或非酒精脂肪肝,NAFL)到进行性形式,非酒精性脂肪性肝炎
(纳什)。大约20-30%的NAFL受试者发展为NASH,这是由肝细胞损伤引起的
炎症和导致的肝纤维化。纳什可能导致威胁生命的条件,但很难
在早期诊断。肝活检是诊断NAFL/NASH的当前标准,但活检是侵入性的,
有关联的发病率,并且受到采样错误和观察者间变异性的限制。许多患者
在以后的纳什阶段,不利影响成果和医疗保健费用,估计
每年320亿美元在美国磁共振成像(MRI)(包括弹性图(MRE))是一个
可以非侵入性量化肝脂肪(MRI质子密度分数),铁超载的技术(MRI
R2*)和纤维化(MRE刚度)。但是,当前的肝脏MRI受到运动伪像挑战和不完整
信号模型,这可能损害定量参数的准确性和可重复性
从他们那里。此外,与NASH相关的早期组织变化没有充分表征
常规MRI。呼吸持续和长协议的共同要求也严重限制了
在诊所采用肝脏MRI。此外,MRI的当前临床解释的能力有限
区分纳什和纳夫。加利福尼亚大学洛杉矶分校的研究团队,大学
亚利桑那州和西门子一直在领导运动刺激径向MRI的发展来量化肝
PDFF和R2*,T2和T1,灌注和刚度。西门子团队还发展了深度学习
医学图像处理和疾病检测和分类的方法。在这个生物工程中
研究伙伴关系项目,多学科研究团队将研究四个目标:(1)开发一个
自由呼吸多参数radial肝脏MRI的强大运动补偿框架; (2)
通过多个的联合采集和联合建模加速定量肝MRI扫描
参数,数据不足采样以及基于深度学习的重建和量化; (3)深度发展
学习模型,以准确对NAFL与NASH进行分类,并基于
定量MRI; (4)前瞻性评估新的定量MRI和深度学习技术
就肝活检对NAFL与NASH进行分类和测量患者的纤维化。新的自由
在本项目中开发的呼吸定量MRI和深度学习技术将准确对
NAFL与NASH的NAFL并使用来自整个肝脏的数据测量纤维化,从而有助于避免肝活检,
允许监视治疗反应,并加速新的新型
疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria I. Altbach其他文献
Maria I. Altbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria I. Altbach', 18)}}的其他基金
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10668430 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10280858 - 财政年份:2021
- 资助金额:
$ 60.83万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10684192 - 财政年份:2021
- 资助金额:
$ 60.83万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10320434 - 财政年份:2019
- 资助金额:
$ 60.83万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10524177 - 财政年份:2019
- 资助金额:
$ 60.83万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10531585 - 财政年份:2019
- 资助金额:
$ 60.83万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10063981 - 财政年份:2019
- 资助金额:
$ 60.83万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7261647 - 财政年份:2007
- 资助金额:
$ 60.83万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7595080 - 财政年份:2007
- 资助金额:
$ 60.83万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7391543 - 财政年份:2007
- 资助金额:
$ 60.83万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Disease-homing light delivery by engineering bioluminescent immune cells for whole body precision photomedicine
通过工程生物发光免疫细胞进行疾病引导光传输,用于全身精准光医学
- 批准号:
10578425 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
TRD2: Interferometric Near Infrared Spectroscopy (iNIRS)
TRD2:干涉近红外光谱 (iNIRS)
- 批准号:
10649467 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
A self-capacitance driven wearable electromyometrial imaging system for maternal and fetal monitoring during pregnancy and labor
一种自电容驱动的可穿戴式肌电成像系统,用于妊娠和分娩期间的母婴监测
- 批准号:
10666402 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10668430 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
A self-capacitance driven wearable electromyometrial imaging system for maternal and fetal monitoring during pregnancy and labor
一种自电容驱动的可穿戴式肌电成像系统,用于妊娠和分娩期间的母婴监测
- 批准号:
10445605 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别: