TMPRSS2 as a potential target for treatments of COVID-19 and respiratory infectious viruses in lung

TMPRSS2 作为治疗 COVID-19 和肺部呼吸道感染病毒的潜在靶点

基本信息

  • 批准号:
    10454033
  • 负责人:
  • 金额:
    $ 70.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary In early 2020, a new virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), generated headlines due to its unprecedented rate of transmission. SARS-CoV-2 caused the first reported cases of coronavirus disease 2019 (COVID-19) in December 2019 and continues to spread worldwide. As a family of RNA viruses, SARS-CoV-2 is prone to mutate at a rate up to a million times faster than its hosts1,2. These rapid genomic alterations have already generated highly transmissible variants, and have raised concerns that the virus will evade vaccine-induced immunity. In addition, a large percentage of the global population remains unvaccinated, due to the challenges of production and mass distribution, vaccine hesitancy, and pending approval status for patients under age 12. Therefore, an effective antiviral has the potential to relieve suffering for millions—not only helping individual patients recover and reducing the number of deaths, but also limiting the number of positive carriers and thereby curbing the spread of the pandemic. This proposal aims to develop an efficient antiviral to impede the virus’ entry into cells, specifically into lung alveolar type II (AT2) cells, the stem cells of the distal lung. Thanks to recent studies, we know which “door” (a receptor called ACE2) and “key” (a protease called TMPRSS2) the virus uses to enter cells. Our goal is to remove the key so the virus cannot open the door and enter host cells. We will use a conventional air-liquid interface (ALI) culture that is representative of the in vivo airway and a recently developed 3-dimensional (3D) in vitro lung organoid model that recapitulates many aspects of lung structure and the cellular environment and that has been used to study respiratory viruses, including SARS-CoV-2. These systems represent tissues better than cell lines, but offers the benefit of being less complex than tissue explants or animal models. In addition, we have generated a panel of highly sensitive and specific mouse monoclonal antibodies (mAbs) directed against TMPRSS2. In preliminary studies, the lead TMPRSS2 mAb, AL20, shows no signs of cytotoxicity with a trend towards inhibition of SARS-CoV-2 pseudovirus entry in cell lines and in lung organoids. Furthermore, we have identified at least two serine protease inhibitors (serpins) that form complexes with TMPRSS2, and the presence of these complexes is inversely correlated with the SARS-CoV-2 infection rate. These findings lead to our hypothesis that targeting TMPRSS2 can inhibit SARS-CoV-2 viral entry and spread. To test our hypothesis, we will first test the efficacy of AL20 for blocking the entry of SARS-CoV-2 into AT2 cells in lung organoids and in airway epithelial cells in ALI cultures, and elucidate the underlying mechanisms. We will then evaluate the effects of serpins on TMPRSS2 activity and SARS-CoV-2 viral entry and spread. Finally, to explore the feasibility of advancing AL20 to human trials, we will test humanized AL20 in a SARS-CoV-2 hamster model. Syrian golden hamsters are naturally susceptible to SARS-CoV-2 infection that recapitulates the clinical, virological, histopathological, and immunological characteristics of human disease, enabling study of its pathogenesis, transmission, and passive immunization effect. Transgenic human ACE2 is not required for SARS-CoV-2 infection, ensuring that the cell types infected are highly relevant. These studies will provide critical insights into the mechanisms whereby TMPRSS2 regulates SARS-CoV-2 entry, and suggest potential therapeutic candidates against COVID-19. The proposed work has the potential to impact the lives of millions of individuals affected by COVID-19 and other respiratory viruses, such as influenza A, that use TMPRSS2 to enter cells.
项目摘要 在2020年初 其空前的传输速率。 SARS-COV-2引起了第一个报道的2019年冠状病毒病病例(Covid-19) 2019年12月,全球继续蔓延。作为RNA病毒家族,SARS-COV-2很容易以某种速度突变 比宿主1,2的速度快一百万倍。这些快速的基因组改变已经产生了高度传播 变体,并引起了人们对病毒逃避疫苗诱导的免疫力的担忧。此外,很大一部分 由于生产和质量分布,疫苗犹豫不决的挑战,全球人口仍然没有接种疫苗 并为12岁以下患者的批准状况等待。因此,有效的抗病毒有可能挽救痛苦 数百万 - 不仅可以帮助个体患者康复和减少死亡人数,而且还限制了数量 积极的载体,从而遏制大流行的传播。 该建议旨在开发有效的抗病毒药,以阻止病毒进入细胞,特别是进入肺肺泡类型 II(AT2)细胞,远端肺的干细胞。多亏了最近的研究,我们知道哪个“门”(称为ACE2的受体)和 “钥匙”(称为TMPRSS2的蛋白酶)该病毒用于进入细胞。我们的目标是删除钥匙,以便病毒无法打开 门进入宿主单元。我们将使用代表体内的常规空气界面(ALI)培养物 气道和最近开发的三维(3D)体外肺器官模型,该模型概括了肺的许多方面 结构和细胞环境以及用于研究包括SARS-COV-2在内的呼吸道病毒。这些 系统代表比细胞线更好的时间,但带来比组织外植体或动物更复杂的好处 型号。此外,我们生成了一组高度敏感和特定的小鼠单克隆抗体(mAb) 针对TMPRSS2。在初步研究中,铅TMPRSS2 mAb Al20没有显示出趋势的细胞毒性迹象 抑制细胞系和肺类器官中的SARS-COV-2伪病毒进入。此外,我们已经确定 至少两个与TMPRSS2形成复合物的丝氨酸蛋白抑制剂(SERPINS),并且这些配合物的存在是 与SARS-COV-2感染率成反比。这些发现导致了我们的假设,即针对TMPRSS2可以 抑制SARS-COV-2病毒进入并扩散。 为了检验我们的假设,我们将首先测试AL20的效率,以阻止SARS-COV-2进入肺中的AT2细胞 器官和AIR道上皮细胞中的ALI培养物,并阐明了潜在的机制。然后我们将评估 Serpins对TMPRSS2活性和SARS-COV-2病毒进入和扩散的影响。最后,探索前进的可行性 AL20对人类试验,我们将在SARS-COV-2仓鼠模型中测试人源化AL20。叙利亚金仓鼠自然是 容易受到SARS-COV-2感染,该感染概括了临床,病毒学,组织病理学和免疫学 人类疾病的特征,可以研究其发病机理,传播和被动免疫抑制作用。 SARS-COV-2感染不需要转基因人ACE2,从而确保感染的细胞类型高度相关。 这些研究将提供有关TMPRSS2调节SARS-COV-2进入的机制的重要见解,并建议使用SARS-COV-2。 针对COVID-19的潜在治疗候选者。拟议的工作有可能影响数百万的生活 受COVID-19和其他呼吸道病毒(例如影响力)的影响,使用TMPRSS2进入细胞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ya-Wen Chen其他文献

Ya-Wen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ya-Wen Chen', 18)}}的其他基金

TMPRSS2 as a potential target for treatments of COVID-19 and respiratory infectious viruses in lung
TMPRSS2 作为治疗 COVID-19 和肺部呼吸道感染病毒的潜在靶点
  • 批准号:
    10280827
  • 财政年份:
    2021
  • 资助金额:
    $ 70.55万
  • 项目类别:

相似国自然基金

单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
  • 批准号:
    62374057
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
磁场-电场协同作用下LaAlO3/SrTiO3界面二维电子气的圆偏振光伏效应研究
  • 批准号:
    12304222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
  • 批准号:
    82300538
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
  • 批准号:
    12304042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
cohesin与SYCP3协同调控精母细胞减数分裂联会复合体形成过程中染色质三维结构建立的分子机制
  • 批准号:
    32370574
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
  • 批准号:
    10593622
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
Mechanistic modeling of the innate immune responses of the human lung to understand the inter-individual heterogeneity of COVID-19 pneumonia
人肺先天免疫反应的机制模型,以了解 COVID-19 肺炎的个体间异质性
  • 批准号:
    10728396
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
  • 批准号:
    10698958
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
  • 批准号:
    10707983
  • 财政年份:
    2022
  • 资助金额:
    $ 70.55万
  • 项目类别:
Novel animal models to study organ-specific SARS-CoV-2-induced pathology
研究器官特异性 SARS-CoV-2 诱导病理学的新型动物模型
  • 批准号:
    10576043
  • 财政年份:
    2022
  • 资助金额:
    $ 70.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了