Geometric and mechanical control of developmental Yap signaling

发育 Yap 信号的几何和机械控制

基本信息

  • 批准号:
    10342966
  • 负责人:
  • 金额:
    $ 43.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

In order to build complex and structured tissues, organs and embryos during development, individual cells need to interpret their environment and acquire appropriate cell fates at the right place and time. Failure to do so can result in various developmental abnormalities or the emergence of cancer when cells become unresponsive to the stops and checks imposed by their environment. The preimplantation mouse embryo develops without any spatially pre-patterned information from the oocyte and without any external input, making it an ideal mammalian developmental system to address how cells interact with their surroundings to specify and maintain cell fates. The first cell fate decision is made in the context of a mere ball of cells. Cells allocated to the surface will acquire the trophectoderm fate, becoming the progenitors of the future placenta, and cells within the embryo will become the inner cell mass, giving rise to the embryo proper and extraembryonic membranes. Interpreting this positional information through the presence or absence of apico-basal polarity, which in turn dictates the activity of the conserved Hippo signaling pathway and the subcellular localization of its effector, Yes-associated protein (YAP), was shown to play a role in driving fate specific gene expression programs. However, YAP has been shown to be a key transducer of various mechanical inputs in other systems, including sensing cell shape, extracellular matrix stiffness or tensile forces transmitted by neighboring cells. Although mechanosensing has been proposed to occur during preimplantation development, it is unclear which mechanical inputs are interpreted and whether these directly influence YAP localization and thereby cell fate. Additionally, as most of our understanding of YAP regulation stems from the analysis of fixed samples, how mechanical and polarity cues regulate YAP localization dynamics is not known. Here we will use cutting-edge long term live imaging of endogenously tagged reporters of YAP and downstream lineage markers to simultaneously measure cell shape and position, YAP localization and cell fate specific transcription factor expression to reveal their joint dynamics. To probe the role of mechanical inputs and cell geometry in directing YAP localization, we use various mechanical perturbations coupled with live or single cell transcriptomic readouts. These perturbations include substituting cell-cell interactions normally experienced in the embryo with cell-mimetic biomaterials, which can be fine-tuned to precisely manipulate geometric and mechanical inputs a single cell receives; or applying different amounts of strain to cells to probe the effects experienced when the blastocoel cavity forms. Finally, by using Fluorescence Recovery after Photobleaching and protein stability measurements in live embryos, we will determine how polarity and mechanics regulate the kinetic behavior of YAP and how YAP activity dynamics is linked to cell fate acquisition and maintenance. This work will shed light on how a conserved signaling pathway operates to integrate multiple inputs coupling morphogenesis with robust acquisition of cell fate in the early mammalian embryo.
为了在开发过程中建立复杂和结构化的组织,器官和胚胎 细胞需要解释其环境并在正确的时间和时间获得适当的细胞命运。无法 这样做会导致各种发育异常或细胞变成癌症的出现 对停止的反应和检查其环境所施加的检查。 植入前小鼠胚胎在没有任何空间预图的信息中发展 卵母细胞,没有任何外部输入,使其成为理想的哺乳动物发育系统,以解决细胞的方式 与周围环境互动以指定和维持细胞命运。第一个细胞命运决定是在上下文中做出的 单纯的细胞球。分配给表面的细胞将获得滋养剂命运,成为祖细胞 未来的胎盘和胚胎内的细胞将成为内部细胞质量,从而产生胚胎 适当的外囊膜。通过存在或不存在解释这种位置信息 Apico-Basal极性,这反过来决定了保守的河马信号通路的活性和 其效应子的亚细胞定位,与YES相关蛋白(YAP)被证明在驱动命运中起作用 特定的基因表达程序。但是,YAP已被证明是各种机械的关键传感器 其他系统中的输入,包括传感细胞形状,细胞外基质刚度或拉伸力传播 通过相邻的细胞。尽管已经提出了在植入前进行机械感应 开发,尚不清楚解释哪些机械输入以及它们是否直接影响YAP 本地化,从而使细胞命运。此外,我们对YAP调节的大多数理解都源于 分析固定样品,机械和极性提示如何调节YAP定位动力学。 在这里,我们将使用内源标记的YAP和下游记者的尖端长期实时成像 谱系标记以同时测量细胞形状和位置,YAP定位和细胞命运特异性 转录因子表达以揭示其关节动力学。探测机械输入和细胞的作用 指导YAP定位时的几何形状,我们使用各种机械扰动,连接现场或单个单元格 转录组读数。这些扰动包括通常在 具有细胞模拟生物材料的胚胎,可以对其进行微调以精确操纵几何和 机械输入单个电池接收;或将不同量的应变应用于细胞以探测效果 当胚泡腔形成时会体验。最后,通过光漂白后使用荧光恢复 和蛋白质稳定性测量在活胚胎中,我们将确定极性和力学如何调节 YAP的动力学行为以及YAP活动动力学如何与细胞命运的获取和维护相关。这 工作将阐明保守信号通路如何运作以整合多个输入耦合 在早期哺乳动物胚胎中稳健地获得细胞命运,形态发生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eszter Posfai其他文献

Eszter Posfai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eszter Posfai', 18)}}的其他基金

Mechanisms of epiblast and primitive endoderm segregation
外胚层和原始内胚层分离的机制
  • 批准号:
    10566100
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
  • 批准号:
    10663798
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:

相似国自然基金

VNN1通过内质网非折叠蛋白应激介导单核巨噬细胞凋亡影响创伤患者脓毒症发生的机制研究
  • 批准号:
    82372549
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
草鱼贮藏过程肌细胞凋亡对鱼肉品质的影响机制研究
  • 批准号:
    32372397
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
MLCK1介导细胞凋亡和自噬影响炎症性肠病进展
  • 批准号:
    82370568
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
EHMT1通过CBX4/MLKL轴调控心肌细胞坏死性凋亡影响心肌缺血再灌注损伤的机制研究
  • 批准号:
    82370288
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
应激颗粒自噬对低氧诱导猪卵泡颗粒细胞凋亡的影响及机制研究
  • 批准号:
    32302741
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 43.26万
  • 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
  • 批准号:
    10678789
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
The transcriptional control of vascular calcification in disease
疾病中血管钙化的转录控制
  • 批准号:
    10647475
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
  • 批准号:
    10648346
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
  • 批准号:
    10696538
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了