Mechanisms of enhancer-promoter communication, genome organization and transcription control

增强子-启动子通讯、基因组组织和转录控制的机制

基本信息

项目摘要

ABSTRACT Metazoan genomes achieve complex gene control by uncoupling regulatory DNA elements from target promoters and allowing regulation at a distance. Thus, a gene can be differentially expressed in different cell types and under different environmental signals or developmental cues. How distal regulatory elements (enhancers) target specific gene promoters, how the search process is shaped by the topology of the genome in the nucleus and how enhancer-promoter interactions are facilitated by regulatory complexes that relay signals to the RNA Polymerase II and control transcription activity remains a mystery. Our goal is to understand molecular and biophysical mechanisms that enable enhancer-promoter communication in human and other mammalian cells. Towards these goals and during the period of this award we will accomplish the following: (i) visualize the dynamic communication of enhancers and target promoters simultaneously with the association of regulatory complexes and gene activity, using novel single-molecule and super-resolution approaches for non-invasive 4D imaging of structure and function of the genome in single live cells; (ii) determine mechanisms by which different classes of architectural proteins shape genome folding, enhancer- promoter communication and transcription kinetics; (iii) dissect the function and interdependencies of individual constituent enhancer elements within complex regulatory landscapes controlling cell identity genes. Our results will establish quantitative frameworks for understanding the biochemistry of transcription regulation in the crowded environment of the nucleus and for interpreting gene regulation and genome organization using soft- matter/polymer physics and related biophysical concepts. These conceptual leaps are needed to ultimately understand physical chromatin organization at sub-Mb scales, the scale most relevant for regulatory genome interactions. Our integrated structure-function approach will provide functional validation and critical tests for gene “regulation-at-a-distance” models. The proposed studies will not only provide substantial new knowledge on the mechanisms of promoter-enhancer communication but will also set the stage for further studies of the interplay of genome topology/organization and gene expression regulation.
抽象的 后生动物基因组通过将调控DNA元件与靶标解偶联来实现复杂的基因控制 启动子并允许远距离调节,因此,基因可以在不同细胞中差异表达。 类型以及不同环境信号或发育线索下的远端调控元件的情况。 (增强子)针对特定基因启动子,搜索过程如何由基因组拓扑决定 细胞核中的增强子-启动子相互作用如何通过传递的调控复合物促进 向 RNA 聚合酶 II 发出信号并控制转录活性仍然是一个谜。 了解促进人类增强子-启动子沟通的分子和生物物理机制 和其他哺乳动物细胞,为了实现这些目标,在获奖期间,我们将实现以下目标: 以下:(i)可视化增强子和目标启动子的动态通信,同时 使用新型单分子和超分辨率将调控复合物与基因活性关联起来 对单个活细胞中的基因组结构和功能进行非侵入性 4D 成像的方法 (ii) 确定不同类别的结构蛋白塑造基因组折叠、增强子的机制 启动子通讯和转录动力学;(iii)剖析个体的功能和相互依赖性 我们的结果是控制细胞身份基因的复杂调控环境中的组成增强子元件。 将建立定量框架来理解转录调控的生物化学 细胞核的拥挤环境,并使用软件解释基因调控和基因组组织 最终需要这些概念上的飞跃。 了解亚 Mb 尺度的物理染色质组织,该尺度与调控基因组最相关 我们的集成结构-功能方法将为功能验证和关键测试提供支持。 基因“远距离调控”模型不仅将提供大量新知识。 启动子-增强子通讯机制的研究,但也将为进一步研究奠定基础 基因组拓扑/组织与基因表达调控的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandros Pertsinidis其他文献

Alexandros Pertsinidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandros Pertsinidis', 18)}}的其他基金

Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10707375
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10510195
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
  • 批准号:
    10672880
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10245100
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
  • 批准号:
    9809804
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10022131
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
  • 批准号:
    10005376
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Understanding Gene Transcription from First-Principles: A single-molecule study
从第一原理理解基因转录:单分子研究
  • 批准号:
    8355484
  • 财政年份:
    2012
  • 资助金额:
    $ 48.43万
  • 项目类别:

相似国自然基金

融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
  • 批准号:
    62075189
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
  • 批准号:
    61906133
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
  • 批准号:
    81871437
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
  • 批准号:
    31800305
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
  • 批准号:
    81601462
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
  • 批准号:
    10716472
  • 财政年份:
    2023
  • 资助金额:
    $ 48.43万
  • 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
  • 批准号:
    10672880
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10687912
  • 财政年份:
    2020
  • 资助金额:
    $ 48.43万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10471925
  • 财政年份:
    2020
  • 资助金额:
    $ 48.43万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10248545
  • 财政年份:
    2020
  • 资助金额:
    $ 48.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了