Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
基本信息
- 批准号:10322088
- 负责人:
- 金额:$ 46.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalArchitectureAttention deficit hyperactivity disorderBipolar DisorderBrainBrain DiseasesCCCTC-binding factorCRISPR interferenceCRISPR-mediated transcriptional activationCell NucleusChromatinClustered Regularly Interspaced Short Palindromic RepeatsComplexComputational BiologyDefectDetectionDimensionsDiseaseElectrophysiology (science)ElementsEmbryoEngineeringEnhancersEpigenetic ProcessFOS geneFoundationsGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGenomicsGuide RNAHi-CHippocampus (Brain)HourImmediate-Early GenesIn VitroIndividualKineticsKnowledgeLightLinkLocationMammalian CellMapsMitoticModelingModificationMolecularMusNeurobiologyNeuronsPathway interactionsProcessProtein Binding DomainProteinsResearch PersonnelResolutionRoleSchizophreniaSingle Nucleotide PolymorphismSliceStimulusStructureSynapsesSynaptic plasticityTestingTimeUp-RegulationWorkYY1 Transcription Factoraddictionautism spectrum disorderbasecell typechromatin remodelingembryonic stem cellepigenomeexperiencegenome editinggenome-widehigh dimensionalityimaging studyin vivoinnovationinterestlong term memorymathematical modelnervous system disorderneural circuitpredictive modelingpublic health relevancerelating to nervous systemresponsespatiotemporalstemsynaptogenesisultra high resolution
项目摘要
Abstract
Post-mitotic neurons in the mammalian brain form synapses that dynamically remodel throughout an
individual’s lifetime to encode short- and long-term memories. Synaptic plasticity involves spatiotemporal fine-
tuning of gene expression levels in response to environmental stimuli, including rapid transcription of
immediate early genes on the time scale of minutes and longer-term global chromatin remodeling. The cis-
acting genetic and epigenetic elements that govern activity-dependent expression are of outstanding interest
toward understanding how experiences sculpt the brain. Here, we submit a proposal entitled ‘Elucidating the 3-
D epigenetic determinants of activity-dependent gene expression in mammalian neurons’. We have assembled
an interdisciplinary team with critical expertise in genome folding, epigenetics, chromatin engineering,
neurobiology, synaptogenesis, electrophysiology, and computational biology. We aim to elucidate the causal
link among long-range looping interactions, epigenetic modifications on the linear genome, expression of their
spatial target genes, and the activity of mammalian neurons. We hypothesize that immediate early genes will
functionally engage in singular short-range loops to rapidly activate expression on the time scale of seconds to
minutes in response to the environmental stimulus of neuronal activation. By contrast, we posit that secondary
response genes will spatially connect via architectural proteins into complex, long-range, pre-existing
topological configurations to poise the genome for a second wave of expression on the order of hours to days
in response to neuronal firing. To test our hypotheses, we will create high-resolution genome folding maps
using the Hi-C during a time course of activation in mouse hippocampal neurons. We will identify activity-
dependent enhancers and gene expression genome-wide and determine their temporal profile with respect
pre-formed and activity-dependent loops. We will formulate mathematical models to predict activity-dependent
expression of immediate early genes and secondary response genes from the timing of enhancer activation
and looping contacts. By integrating single nucleotide variants linked to autism, schizophrenia, bipolar disorder,
addiction, and attention-deficit/hyperactivity disorder with our models, we will predict the specific target genes
and potential pathways involved in neurological disease. Finally, we will dissect the functional role for loops
and enhancer activity in regulating the activity-dependent transcription of Bdnf and c-fos using CRISPR
genome editing of architectural protein binding motifs and CRISPRi inhibition of specific enhancers. Our work
will uncover the genome’s long-range interaction landscape in mammalian neurons and reveal the causal link
between the 3-D Epigenome and the kinetics of transcriptional response to environmentally stimulated
neuronal activation.
抽象的
哺乳动物大脑中的有丝分裂后神经元形成突触,在整个过程中动态重塑
个人一生编码短期和长期记忆的突触可塑性涉及时空精细。
调整基因表达水平以响应环境刺激,包括快速转录
在几分钟的时间尺度上的早期基因和长期的整体染色质重塑。
控制活性依赖性表达的作用遗传和表观遗传元件引起了人们的极大兴趣
旨在理解经验如何塑造大脑。在这里,我们提交了一份题为“阐明 3-
D 哺乳动物神经元活性依赖性基因表达的表观遗传决定因素。
一个跨学科团队,在基因组折叠、表观遗传学、染色质工程、
我们的目标是阐明神经生物学、突触发生、电生理学和计算生物学。
长程循环相互作用、线性基因组表观遗传修饰、其表达之间的联系
空间目标基因,以及哺乳动物神经元的活动。我们捕获立即的早期基因。
功能性地参与单一短程循环,以秒为单位快速激活表达
相比之下,我们认为次要的是对环境刺激的反应。
反应基因将通过结构蛋白在空间上连接成复杂的、长距离的、预先存在的
拓扑结构,使基因组在几小时到几天的时间内为第二波表达做好准备
为了响应神经放电,我们将创建高分辨率的基因组折叠图。
在小鼠海马神经元的激活过程中使用 Hi-C 我们将识别活动-
依赖增强子和全基因组基因表达,并确定它们的时间概况
我们将制定数学模型来预测活动相关的循环。
从增强子激活的时间开始立即早期基因和次级反应基因的表达
通过整合与自闭症、精神分裂症、双相情感障碍相关的单核苷酸变异,
成瘾,注意力缺陷/多动障碍与我们的模型,我们将预测特定的目标基因
最后,我们将剖析循环的功能作用。
使用 CRISPR 调节 Bdnf 和 c-fos 活性依赖性转录的增强子活性
我们的工作是结构蛋白结合基序的基因组编辑和 CRISPRi 抑制。
将揭示哺乳动物神经元基因组的远程相互作用景观并揭示因果关系
3-D 表观基因组与环境刺激转录反应动力学之间的关系
神经激活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Elizabeth Phillips-Cremins其他文献
Jennifer Elizabeth Phillips-Cremins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Elizabeth Phillips-Cremins', 18)}}的其他基金
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
- 批准号:
10469522 - 财政年份:2021
- 资助金额:
$ 46.01万 - 项目类别:
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
- 批准号:
10674017 - 财政年份:2021
- 资助金额:
$ 46.01万 - 项目类别:
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
- 批准号:
10261918 - 财政年份:2021
- 资助金额:
$ 46.01万 - 项目类别:
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
- 批准号:
10545070 - 财政年份:2020
- 资助金额:
$ 46.01万 - 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
- 批准号:
10208688 - 财政年份:2019
- 资助金额:
$ 46.01万 - 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
- 批准号:
10447121 - 财政年份:2019
- 资助金额:
$ 46.01万 - 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
- 批准号:
10634553 - 财政年份:2019
- 资助金额:
$ 46.01万 - 项目类别:
Engineering 3-D Epigenome Topology with Light
利用光设计 3D 表观基因组拓扑
- 批准号:
8955256 - 财政年份:2015
- 资助金额:
$ 46.01万 - 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
- 批准号:
7870494 - 财政年份:2009
- 资助金额:
$ 46.01万 - 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
- 批准号:
8066613 - 财政年份:2009
- 资助金额:
$ 46.01万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
- 批准号:
10545070 - 财政年份:2020
- 资助金额:
$ 46.01万 - 项目类别: