From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory

从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制

基本信息

项目摘要

Title: From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long- term memory Summary The Cremins Lab focuses on higher-order genome folding and how classic epigenetic modifications work through long-range, spatial mechanisms to govern genome function in the developing brain. Much is already known regarding how transcription factors work in the context of the linear genome to regulate gene expression. Yet, severe limitations exist in our ability to engineer chromatin in neural circuits to correct synaptic defects in vivo. At the lab’s inception, it remained unclear whether and how genome folding would functionally influence cell type-specific gene expression. Thus far, we have developed and applied new molecular and computational technologies to discover that nested chromatin domains and long-range loops undergo marked reconfiguration during neural lineage commitment, somatic cell reprogramming, neuronal activity stimulation, and in repeat expansion disorders. We have demonstrated that loops induced by cortical neuron stimulation, engineered through synthetic architectural proteins, and miswired in fragile X syndrome were tightly connected to transcription, thus providing early insight into the genome’s structure-function relationship. We will now focus on a fundamental mystery in neuroscience: how memory is encoded over decades despite rapid turnover of synaptic proteins/RNAs. We hypothesize that the 3D genome integrates molecular traces of synaptic plasticity written on chromatin to store long-term memory in neural circuits. We will employ single-cell genomics and imaging technologies to dissect the extent to which individual synaptic inputs create 3D epigenetic traces. We will perform genome-wide CRISPR screens to identify specific loops and epigenetic modifications functionally important for synaptic plasticity. We will also re-direct technologies used for genome architecture mapping to create molecular activity-dependent connectome maps, and computationally integrate neuronal connectome maps across length scales with 3D epigenetic data sets. Successful completion of this work will shed new light on the genetic and epigenetic mechanisms governing structural and functional synaptic plasticity in physiologically relevant in vitro and in vivo models of memory encoding and consolidation. Many neurological disorders exhibit synaptic defects, and alterations in neuronal activity-dependent gene expression underlie pathological neural phenotypes. Addressing this knowledge gap will provide an essential foundation for our long-term goals to understand how, when, and why pathologic genome misfolding leads to synaptic dysfunction, and to engineer the 3D genome to reverse pathologic synaptic defects in debilitating neurological diseases.
标题:从3D基因组到神经连接组:编码长期的高阶染色质机制 术语内存 概括 Cremins Lab专注于更高的基因组折叠以及经典表观修饰的工作方式 通过远程,空间机制控制发育中的大脑中的基因组功能。 关于转录因子如何在线性基因组中如何起作用以调节基因 表达。 体内缺陷。 影响细胞的类型基因表达。 发现嵌套染色质域和远程环的计算技术经历了标记 在神经谱系承诺,体细胞重编程,神经元活性刺激期间的重新配置, 在反复扩张障碍中。 通过合成的建筑蛋白进行了设计,并且在脆弱的X综合征中脱节是紧密连接的 现在,我们将重点放在转录上,从而提供对基因组结构功能的早期见解。 关于神经科学中的基本谜团:尽管很快流失了数十年的记忆如何编码 突触蛋白/RNA。 写在染色质上,以存储长期记忆在神经回路中。 成像技术是为了剖析单个突触输入的程度 将在功能上识别特定的循环和表观遗传修饰 对于突触可塑性很重要。 创建分子活性依赖性连接组图,并在计算中整合神经元连接组 用3D表观遗传数据集的长度尺度上的地图。 关于遗传和表观遗传机制,用于统一和功能性突触塑料 许多神经与生理学相关的体外和体内记忆模型编码和整合模型 疾病表现出突触缺陷和神经元活性依赖性基因expresslie中的疾病 病理神经表型,解决这一知识差距将为我们的基础 长期目标以了解如何, 功能障碍,并在虚弱的神经病学中逆转病理突触缺陷来设计3D基因组 疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Elizabeth Phillips-Cremins其他文献

Jennifer Elizabeth Phillips-Cremins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Elizabeth Phillips-Cremins', 18)}}的其他基金

From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
  • 批准号:
    10674017
  • 财政年份:
    2021
  • 资助金额:
    $ 113.75万
  • 项目类别:
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
  • 批准号:
    10261918
  • 财政年份:
    2021
  • 资助金额:
    $ 113.75万
  • 项目类别:
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
  • 批准号:
    10545070
  • 财政年份:
    2020
  • 资助金额:
    $ 113.75万
  • 项目类别:
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
  • 批准号:
    10322088
  • 财政年份:
    2020
  • 资助金额:
    $ 113.75万
  • 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
  • 批准号:
    10208688
  • 财政年份:
    2019
  • 资助金额:
    $ 113.75万
  • 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
  • 批准号:
    10447121
  • 财政年份:
    2019
  • 资助金额:
    $ 113.75万
  • 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
  • 批准号:
    10634553
  • 财政年份:
    2019
  • 资助金额:
    $ 113.75万
  • 项目类别:
Engineering 3-D Epigenome Topology with Light
利用光设计 3D 表观基因组拓扑
  • 批准号:
    8955256
  • 财政年份:
    2015
  • 资助金额:
    $ 113.75万
  • 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
  • 批准号:
    7870494
  • 财政年份:
    2009
  • 资助金额:
    $ 113.75万
  • 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
  • 批准号:
    8066613
  • 财政年份:
    2009
  • 资助金额:
    $ 113.75万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 113.75万
  • 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
  • 批准号:
    10659772
  • 财政年份:
    2023
  • 资助金额:
    $ 113.75万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 113.75万
  • 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
  • 批准号:
    10727237
  • 财政年份:
    2023
  • 资助金额:
    $ 113.75万
  • 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 113.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了