1/2: B-SNIP: Algorithmic Diagnostics for Efficient Prescription of Treatments (ADEPT)
1/2:B-SNIP:高效治疗处方的算法诊断 (ADEPT)
基本信息
- 批准号:10298707
- 负责人:
- 金额:$ 30.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsBacterial Artificial ChromosomesBiologicalBiological MarkersBipolar DisorderChicagoClassificationClinicalClinical DataClinical TreatmentClozapineCognitionCognitiveCollaborationsComplexDataDatabasesDiagnosisDiagnosticDimensionsDiscriminationDiseaseElectrophysiology (science)EnvironmentEtiologyEvaluationHylobates GenusIndividualInterventionInterviewInvestigationLaboratoriesMeasuresMedicalMedicineModelingModificationNatureNeurobiologyOutcomePatientsPhenotypeProbabilityProceduresPsychosesResourcesSaccadesSamplingSchizoaffective DisordersSchizophreniaSensorySignal TransductionStandardizationStimulusSyndromeTestingTimeTranslationsUniversitiesWorkanalytical toolbasecase-basedclinical Diagnosisclinical applicationcognitive testingimprovedindividualized medicinelaboratory equipmentnovelpatient subsetsphenomenological modelspreservationrelating to nervous systemresearch clinical testingresponsetherapy developmentvalidation studies
项目摘要
Clinical phenomenology alone neither (i) captures biologically based disease entities, nor (ii) allows for
individualized treatment prescriptions based on neurobiology. The B-SNIP consortium showed and replicated
that schizophrenia, schizoaffective, and bipolar disorder with psychosis lack neurobiological distinctiveness. B-
SNIP transitioned to subgrouping psychosis cases based on biomarker homology. We produced and replicated
biologically homologous psychosis Biotypes (BT1, BT2, BT3) that may assist treatment targeting for psychosis.
This twelve-month project will develop a time and resource efficient algorithm for deriving B-SNIP Biotypes that
can be implemented in even under-resourced environments. Like in laboratory medicine, the procedure
(ADEPT) will be stepwise (clinical evaluation, then cognition, then electrophysiology) to yield Biotypes for
which specific treatments can be either implemented (established interventions) or evaluated (novel treatment
development). Aim 1: B-SNIP Biotypes currently require specialized equipment for laboratory testing, and
multiple tests with statistical integration across multiple scores. Instead, we will determine the best individual
measures that yield the most efficient and highest probability Biotype memberships. ADEPT will be adaptive
both within (clinical, cognitive, electrophysiological) and across the domains (clinical features inform selection
of cognitive tests which inform selection of electrophysiological tests). At each stage, ADEPT will produce a
Biotype classification and confidence. This will allow for Biotype determination in a proportion of cases even
when laboratory testing resources are limited. Aim 2: The first contact in medical evaluation involves clinical
characterization. Clinical features alone will yield Biotype discriminations sufficient for treatment targeting in a
small but significant subset of patients (»15%, mostly BT3). Aim 3: Cognition tests are the least technically
demanding laboratory assessments, and are powerful discriminators of Biotypes. B-SNIP uses BACS, Stop
Signal (SST), and antisaccades to assess cognition. Addition of cognition to clinical features will yield »80%
accuracy for identifying BT3s and »40% of all cases (mostly BT2, although BT1 and BT2 are difficulty to
differentiate without electrophysiology). Patients will receive different cognitive tests based on the adaptive
algorithm (e.g., SST may be superior for Biotype determination in some cases). The adaptive approach
preserves classification precision while reducing clinician and patient burden. Aim 4: The most important
Biotype differentiating electrophysiology features are low neural response to salient stimuli (BT1) and
exuberant nonspecific neural activity (BT2). We used multiple complex electrophysiology measures, but we will
identify tests and measures that yield the most efficient Biotype differentiation. Addition of electrophysiology to
clinical and cognition information will yield 90-95% accuracy for identifying Biotypes for all cases. Again, for a
given patient, we will adaptively select the specific electrophysiological measures to maximize classification
accuracy for that patient (e.g., P300 may be superior for Biotype determination in some cases).
单独的临床现象学(i)捕获基于生物学的疾病实体,而(ii)允许
基于神经生物学的个性化治疗处方。显示并复制的B-SNIP联盟
精神分裂症,精神分裂性和躁郁症患有精神病缺乏神经生物学的独特性。 b-
剪切过渡到基于生物标志物同源性的精神病病例。我们生产并复制了
生物学上同源性精神病生物型(BT1,BT2,BT3)可能有助于针对精神病的治疗。
这个十二个月的项目将开发一种时间和资源有效算法,用于推导B-SNIP生物型
甚至可以在资源不足的环境中实现。像实验室医学一样
(熟练)将逐步(临床评估,然后认知,然后是电生理学),以产生生物型
可以实施哪种特定治疗方法(已建立的干预措施)或评估(新的治疗方法
发展)。目标1:B-SNIP生物型当前需要专业设备进行实验室测试,并且
多个测试的多个测试跨多个分数。相反,我们将确定最好的个人
产生最有效和最高概率生物型成员资格的度量。熟练会是自适应的
内部(临床,认知,电生理)和整个领域(临床特征信息选择)
认知测试的选择,这些测试的选择)。在每个阶段,熟练都会产生一个
生物型分类和信心。这将允许在一定比例的情况下确定生物型
当实验室测试资源受到限制时。目标2:医学评估中的第一次接触涉及临床
表征。仅临床特征就会产生足以用于治疗靶向靶向的生物型区分
小但显着的患者子集(»15%,主要是BT3)。 AIM 3:认知测试在技术上是最少的
苛刻的实验室评估,是生物型的强大歧视者。 B-SNIP使用BAC,停止
信号(SST)和评估认知的反扫视。在临床特征中添加认知将产生»80%
识别BT3和所有情况的40%的精度(尽管BT1和BT2很难
在没有电生理学的情况下进行区分)。患者将根据适应性接受不同的认知测试
算法(例如,在某些情况下,SST对于生物型的测定可能是优越的)。适应性方法
保留分类精度,同时减少临床和患者伯恩。目标4:最重要的
生物型区分电生理特征是对显着刺激(BT1)的神经元反应低,并且
旺盛的非特异性神经活动(BT2)。我们使用了多个复杂的电生理测量指标,但是我们将
确定产生最有效的生物型分化的测试和度量。将电生理学添加到
临床和认知信息将产生90-95%的精度,以鉴定所有情况的生物型。再次,
给定患者,我们将自适应选择特定的电生理测量以最大化分类
该患者的准确性(例如,在某些情况下,P300对于生物型的测定可能优异)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Psychosis and fever revisited.
- DOI:10.1016/j.schres.2021.11.025
- 发表时间:2022-04
- 期刊:
- 影响因子:4.5
- 作者:Clementz BA
- 通讯作者:Clementz BA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRETT A CLEMENTZ其他文献
BRETT A CLEMENTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRETT A CLEMENTZ', 18)}}的其他基金
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
- 批准号:
10543156 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
5/5 - Biomarkers/Biotypes, Course of Early Psychosis and Specialty Services (BICEPS)
5/5 - 生物标志物/生物型、早期精神病课程和专业服务 (BICEPS)
- 批准号:
10683289 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
- 批准号:
10373165 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
5/5: Selective Antipsychotic Response to Clozapine in B-SNIP Biotype-1 (CLOZAPINE)
5/5:B-SNIP Biotype-1 (CLOZAPINE) 中氯氮平的选择性抗精神病反应
- 批准号:
10613498 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
5/5: Selective Antipsychotic Response to Clozapine in B-SNIP Biotype-1 (CLOZAPINE)
5/5:B-SNIP Biotype-1 (CLOZAPINE) 中氯氮平的选择性抗精神病反应
- 批准号:
10397394 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
5/5 BIPOLAR-SCHIZOPHRENIA NETWORK FOR INTERMEDIATE PHENOTYPES (B-SNIP) - Resubmission - 1
5/5 中间表型的双极精神分裂症网络 (B-SNIP) - 重新提交 - 1
- 批准号:
9338010 - 财政年份:2015
- 资助金额:
$ 30.2万 - 项目类别:
4/4-Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP)
4/4-精神病和情感研究领域和中间表型(PARDIP)
- 批准号:
8902951 - 财政年份:2013
- 资助金额:
$ 30.2万 - 项目类别:
4/4-Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP)
4/4-精神病和情感研究领域和中间表型(PARDIP)
- 批准号:
8706963 - 财政年份:2013
- 资助金额:
$ 30.2万 - 项目类别:
4/4-Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP)
4/4-精神病和情感研究领域和中间表型(PARDIP)
- 批准号:
8504490 - 财政年份:2013
- 资助金额:
$ 30.2万 - 项目类别:
Neural Noise and Cognitive Control in Schizophrenia
精神分裂症的神经噪声和认知控制
- 批准号:
8607212 - 财政年份:2011
- 资助金额:
$ 30.2万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discreet Wearable device for Continuous Real-time Monitoring of Alcohol
用于连续实时监测酒精浓度的谨慎可穿戴设备
- 批准号:
10872334 - 财政年份:2023
- 资助金额:
$ 30.2万 - 项目类别:
Ribo-STAMPEDE: novel tools for molecular profiling of brain cell types
Ribo-STAMPEDE:脑细胞类型分子分析的新工具
- 批准号:
10506300 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Discreet Wearable device for Continuous Real-time Monitoring of Alcohol
用于连续实时监测酒精浓度的谨慎可穿戴设备
- 批准号:
10547664 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
2/2 B-SNIP: Algorithmic Diagnostics for Efficient Prescription of Treatments (ADEPT) - Resubmission - 1
2/2 B-SNIP:高效治疗处方的算法诊断 (ADEPT) - 重新提交 - 1
- 批准号:
10299189 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别: