Investigating mechanisms regulating cell adhesion during tissue remodeling
研究组织重塑过程中调节细胞粘附的机制
基本信息
- 批准号:10229401
- 负责人:
- 金额:$ 6.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adherens JunctionAdhesionsAdultAffectAffinityAnimal ModelApicalAutomobile DrivingBehaviorBehavior monitoringBiochemicalBiologicalCadherinsCancer BiologyCell AdhesionCell Adhesion MoleculesCell-Cell AdhesionCellsCellular biologyCessation of lifeComplexCongenital DisordersDataDefectDevelopmentDiseaseDorsalDrosophila genusDrosophila melanogasterE-CadherinEctopic ExpressionEmbryoEmbryonic DevelopmentEpithelialEventFailureFogsGene SilencingGenesGeneticGenetic TranscriptionGeometryGerm LayersGoalsHealthHomeostasisHumanImageIntercellular JunctionsKnowledgeLinkMalignant NeoplasmsMass ScreeningMass Spectrum AnalysisMesenchymalMissionModelingMorphogenesisNatureNeoplasm MetastasisOutcomePathway interactionsPost-Transcriptional RegulationPost-Translational Protein ProcessingProcessProteinsProteomicsRNA InterferenceRegulationRepressionResearchRoleSignal TransductionSnailsSubcellular structureSystemTestingTissuesTranscriptional RegulationUnited States National Institutes of HealthWorkbasebeta catenincancer cellcell behaviorcell motilitycomparativeconstrictionembryo tissueflygastrulationgene repressioninnovationinsightknock-downnanobodiesnovelphysical propertyphysical stateprotein complexsegregationtraining opportunitytranscription factortumor
项目摘要
Project Summary: Precise control of cell-cell adhesion is critical for maintaining tissue integrity during
development and in adult tissues. Abnormal activation of signals that regulate adhesion in tumors can result in
epithelial-mesenchymal transition (EMT) and cancer metastasis, but we do not fully understand the mechanism
through which these regulatory signals cause loss of adhesion. A proposed model for this process is
transcriptional repression of cell adhesion genes: the EMT regulator Snail represses expression of the E-
cadherin adhesion molecule, a core component of Adherens Junctions (AJs), and is thought to control
adhesion in this manner. However, recent observations have shown that Snail regulates the stability and
localization of AJs independent of transcriptional regulation of E-Cadherin levels. The specific mechanism by
which Snail regulates AJ organization remains unknown, highlighting an important gap in our understanding of
the signals that regulate adhesion and govern the cellular decision to undergo EMT. The long-term goal of this
project is to determine how cell-cell adhesion is controlled during development to enable tissue morphogenesis
and segregation of germ layers. The overall objective of this proposal is to identify mechanisms by which Snail
regulates AJ organization during tissue remodeling events during embryonic development in Drosophila, and
determine how this regulation contributes to a cell’s decision to undergo EMT. Preliminary data indicate that
ectopic Snail expression causes a rapid shift in E-Cadherin protein localization from cell junctions to
intracellular structures. Other observations have shown that cells in the Drosophila ventral furrow undergo
junctional remodeling through Snail-dependent destabilization of AJs. Remarkably, this regulation occurs prior
to depletion of maternally provisioned E-Cadherin protein, and is not inhibited by ectopic E-cadherin
expression. Together these data indicate that Snail controls AJ organization through an additional post-
transcriptional mechanism. The rationale for this proposed work is to gain insight not only into the nature of
these mechanisms, but also the general principles governing cell adhesion during EMT events. Our central
hypothesis is that Snail modulates adhesion by altering the stability and localization of junctional cadherin
protein complexes through a mechanism independent of E-cadherin transcriptional regulation. This hypothesis
will be tested by pursuing two specific aims: we will (1) identify the mechanism through which Snail affects AJ
organization, and (2) define the physical conditions in which Snail can promote EMT in Drosophila epithelial
tissues. Our approach is innovative because it is one of the first to examine the mechanistic basis of Snail-
dependent shifts in cadherin localization, and further because it uses an integrative strategy that combines
biochemical and cell biological approaches. The proposed research is significant because it is expected to
advance our understanding of the post-transcriptional regulation of cell-cell adhesion, and may open new
avenues of research for understanding cancer biology and developmental defects.
项目摘要:细胞细胞粘附的精确控制对于维持组织完整性至关重要
在成人组织中的发育异常。
上皮间质转变(EMT)和癌症转移,但我们不完全了解机制
调节信号导致粘附丧失。
细胞粘附基因的转录抑制:EMT调节蜗牛抑制E表达E-
钙粘着蛋白粘附分子,粘附连接的核心成分(AJS),并且可以控制
但是,以这种方式进行粘附。
AJ的定位独立于电子钙粘蛋白水平的转录调节。
蜗牛调节AJ组织仍然未知,强调了我们对
调节粘附并控制细胞决策的信号Toundergo EMT。
项目是确定在发育过程中如何控制细胞细胞粘附以实现组织形态发生
和细菌层的隔离。
调节果蝇胚胎发育期间组织重塑事件期间的AJ组织,
确定该法规如何促进一个单元的决定进行EMT的决定。
异位蜗牛表达了电子钙粘蛋白蛋白定位的快速转移从细胞连接到
细胞内结构。
通过蜗牛依赖性对AJ的稳定性进行连接重塑。
部署母亲提供的E-钙粘蛋白蛋白,并且不会被异位E-钙粘蛋白抑制
表达在一起的数据表明,蜗牛通过额外的后
转录机制。
这些机制,也是我们中心期间细胞粘附的一般原则
假设是蜗牛通过改变和定位连接蛋白的粘附
蛋白质复合物通过E-钙粘着蛋白转录调节独立于该假设
将通过追求两个具体目标来测试:我们将(1)通过蜗牛确定机制会影响AJ
组织,以及(2)定义蜗牛可以在果蝇中促进EMT的物理条件
组织。
依赖性钙粘蛋白定位的转变,进一步是因为它使用了结合的综合策略
生化和细胞生物学方法。
促进我们对细胞细胞细胞粘附后传输后置术的理解,并可能打开新的
了解癌症生物学和发育缺陷的研究途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Nathaniel Clarke其他文献
Fitness benefits from climate change in a temperate lizard
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Donald Nathaniel Clarke - 通讯作者:
Donald Nathaniel Clarke
Donald Nathaniel Clarke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Nathaniel Clarke', 18)}}的其他基金
Investigating mechanisms regulating cell adhesion during tissue remodeling
研究组织重塑过程中调节细胞粘附的机制
- 批准号:
10001978 - 财政年份:2019
- 资助金额:
$ 6.86万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of microtubule-mediated cranial neural crest EMT and differentiation
微管介导的颅神经嵴EMT和分化机制
- 批准号:
10507726 - 财政年份:2022
- 资助金额:
$ 6.86万 - 项目类别:
Obscurin-kinase 1/N-cadherin: a new signaling axis in cardiac structure/function
暗蛋白激酶 1/N-钙粘蛋白:心脏结构/功能中的新信号轴
- 批准号:
10532967 - 财政年份:2022
- 资助金额:
$ 6.86万 - 项目类别:
Mechanisms of microtubule-mediated cranial neural crest EMT and differentiation
微管介导的颅神经嵴EMT和分化机制
- 批准号:
10633228 - 财政年份:2022
- 资助金额:
$ 6.86万 - 项目类别:
Obscurin-kinase 1/N-cadherin: a new signaling axis in cardiac structure/function
暗蛋白激酶 1/N-钙粘蛋白:心脏结构/功能中的新信号轴
- 批准号:
10677738 - 财政年份:2022
- 资助金额:
$ 6.86万 - 项目类别:
Role of Poldip2 in endothelial barrier function and inflammation in the lung
Poldip2 在肺内皮屏障功能和炎症中的作用
- 批准号:
10266211 - 财政年份:2020
- 资助金额:
$ 6.86万 - 项目类别: