Mechanisms of microtubule-mediated cranial neural crest EMT and differentiation
微管介导的颅神经嵴EMT和分化机制
基本信息
- 批准号:10507726
- 负责人:
- 金额:$ 15.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-02 至 2024-06-01
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdherens JunctionAdhesionsAdultAffectAutomobile DrivingBiological AssayCDH1 geneCadherinsCartilageCell AdhesionCell Adhesion MoleculesCell PolarityCell membraneCell-Cell AdhesionCellsCephalicChickensComplexCongenital AbnormalityCranial NervesCytoskeletonDataDefectDevelopmentDiseaseE-CadherinEctodermEctoderm CellElementsEmbryoEnvironmental Risk FactorEpidermisEpigenetic ProcessEpithelialFacial nerve structureFutureGeneticGenetic ScreeningGenetic TranscriptionGoalsGrowth and Development functionHealthHumanHuman DevelopmentHuman bodyIntermediate FilamentsInvadedLeadLinkMalignant NeoplasmsMediatingMembraneMethodsMicrofilamentsMicrotubulesMissionModelingNatural regenerationNervous system structureNeural CrestNeural Crest CellNeural FoldNeural Tube ClosureNeural tubeNeuraxisNeuroepithelialNeurogliaNeuronsOculomotor nerve structureOlfactory NervePathologicPatternPeripheralPeripheral Nervous SystemProcessProteinsPublic HealthPublishingRegulator GenesResearchRoleSignal TransductionSpecific qualifier valueStructureSyndromeTestingTissuesTranscriptTranscriptional RegulationTrigeminal nerve structureTubulinUnited States National Institutes of HealthWorkbasecadherin-11cell motilitycell typecraniofacial bonecraniofacial developmentepithelial to mesenchymal transitionexperimental studyin vivoloss of functionmigrationnervous system disorderneurodevelopmentneuroregulationnovel markernovel strategiesphysical separationprematurerelating to nervous systemtericstraffickingtranscription factor
项目摘要
Project Summary/Abstract
Defective development of neural crest (NC) cells can cause structural and neurological disorders that have
long-term deleterious effects on human health. NC cells form the neurons and glia of the peripheral and en-
teric nervous systems in addition to craniofacial bone and cartilage. Early formation and separation of NC
cells from the adherent neural tube is a process tightly regulated by cell signaling, epigenetic and transcrip-
tional changes, and altered cell-cell adhesion via changing cadherin protein localization. Structurally, as the
neural folds rise to meet in the center of the embryo to create the neural tube, non-neural ectodermal cells
meet and cover the embryo, eventually differentiating into epidermis and placodes. After neural tube clo-
sure, NC cells undergo an epithelial to mesenchymal transition (EMT), leave their neuroepithelial neigh-
bors, and migrate throughout the embryo, invading various tissues, and creating diverse derivatives. Rapid
changes at transcriptional, translational, and post-translational levels allow for dynamic transitions in cell
polarity, adhesion, and migration. Several transcription factors function as regulators of genes encoding
cadherin proteins during NC cell development, but there is a critical lack of information about the more rapid
processes that alter cadherin protein localization during NC EMT. Specifically, we aim to understand how
microtubules and related cytoskeletal factors regulate cell-cell adhesion at this developmental stage. Based
on our published work and preliminary data, -III tubulin (TUBB3) is upregulated in NC cells at the onset of
NC EMT. Our objective is to understand the complex mechanisms that control NC EMT and subsequent
NC differentiation by defining how the microtubule element, TUBB3, regulates cadherin protein localization
during NC cell EMT and differentiation in vivo. Further, we will identify how perturbation of TUBB3 affects
the structure of other cytoskeletal elements during NC EMT. In Aim 1 we will perform gain and loss of
TUBB3 experiments followed by quantitative analyses of changes in the expression and localization of epi-
thelial and migratory cadherins (CDH2, CDH1, and CDH11), tissue-specific markers (NC and neural tube),
cell migration and cranial NC differentiation using quantitative spatial approaches at the transcript and pro-
tein levels in the chicken (Gallus gallus), which mirrors human development at early stages. In Aim 2, we
will perform perturbations of TUBB3 to determine how defective TUBB3-mediated microtubule assembly
affects the localization of microtubules, intermediate filaments, and actin filaments during NC EMT. With
these experiments, we expect to integrate both traditional and novel approaches to understanding the com-
plex links between cell adhesion and cytoskeletal arrangements during NC EMT. We hope to contribute a
missing, fundamental element to our knowledge of the protein network that drives the development of NC
cells, which is crucial for the identification of novel markers of normal and abnormal development of NC-
derived adult cell types.
项目概要/摘要
神经嵴 (NC) 细胞发育缺陷可导致结构性和神经系统疾病
NC 细胞形成外周神经元和神经胶质细胞,对人类健康产生长期有害影响。
除颅面骨和软骨外的颅神经系统 NC 的早期形成和分离。
来自贴壁神经管的细胞是一个受到细胞信号传导、表观遗传和转录严格调控的过程。
结构上的改变,以及通过改变钙粘蛋白定位来改变细胞与细胞的粘附。
神经褶皱上升并在胚胎中心相遇,形成神经管、非神经外胚层细胞
接触并覆盖胚胎,最终分化为表皮和基板。
当然,NC 细胞经历上皮间质转化 (EMT),离开其神经上皮邻居
bors,并在整个胚胎中迁移,侵入各种组织,并产生多种快速衍生物。
转录、翻译和翻译后水平的变化允许细胞内的动态转变
极性、粘附和迁移等多种转录因子可作为编码基因的调节因子。
NC 细胞发育过程中钙粘蛋白的存在,但目前严重缺乏关于更快速的信息
具体来说,我们的目标是了解在 NC EMT 期间改变钙粘蛋白定位的过程。
微管和相关的细胞骨架因子在此发育阶段调节细胞间粘附。
根据我们发表的工作和初步数据,-III 微管蛋白 (TUBB3) 在 NC 细胞中在
我们的目标是了解控制 NC EMT 及其后续工作的复杂机制。
通过定义微管元件 TUBB3 如何调节钙粘蛋白定位来进行 NC 分化
此外,我们将确定 TUBB3 的扰动如何影响 NC 细胞 EMT 和体内分化。
在目标 1 中,我们将执行 NC EMT 期间其他细胞骨架元素的结构的增益和丢失。
TUBB3实验随后对epi-表达和定位的变化进行定量分析
皮细胞和迁移钙粘蛋白(CDH2、CDH1 和 CDH11)、组织特异性标记物(NC 和神经管)、
使用定量空间方法在转录本和亲细胞上进行细胞迁移和颅脑 NC 分化
鸡 (Gallus gallus) 中的蛋白质水平反映了人类早期发育阶段。
将执行 TUBB3 的扰动以确定 TUBB3 介导的微管组装有缺陷
影响 NC EMT 期间微管、中间丝和肌动蛋白丝的定位。
在这些实验中,我们希望整合传统和新颖的方法来理解计算机
NC EMT 期间细胞粘附和细胞骨架排列之间的复杂联系我们希望做出贡献。
我们对驱动 NC 发展的蛋白质网络的了解缺失了基本要素
细胞,这对于鉴定 NC 正常和异常发育的新标志物至关重要
衍生的成体细胞类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crystal D Rogers其他文献
Crystal D Rogers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Crystal D Rogers', 18)}}的其他基金
Mechanisms of microtubule-mediated cranial neural crest EMT and differentiation
微管介导的颅神经嵴EMT和分化机制
- 批准号:
10633228 - 财政年份:2022
- 资助金额:
$ 15.03万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the epidermal microenvironment in melanoblast migration and invasion: a novel approach to understanding invasive melanoma
研究黑色素细胞迁移和侵袭的表皮微环境:一种了解侵袭性黑色素瘤的新方法
- 批准号:
10537221 - 财政年份:2023
- 资助金额:
$ 15.03万 - 项目类别:
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 15.03万 - 项目类别:
Mechanisms of KSHV-induced endothelial cell loss of contact inhibition of proliferation
KSHV诱导内皮细胞失去接触抑制增殖的机制
- 批准号:
10762813 - 财政年份:2023
- 资助金额:
$ 15.03万 - 项目类别:
Polarity proteins and intestinal mucosal responses to inflammation and injury
极性蛋白和肠粘膜对炎症和损伤的反应
- 批准号:
10442201 - 财政年份:2022
- 资助金额:
$ 15.03万 - 项目类别:
Mechanisms of Mechanotransduction by LIM Domain Proteins
LIM 结构域蛋白的力转导机制
- 批准号:
10657771 - 财政年份:2022
- 资助金额:
$ 15.03万 - 项目类别: