Understanding and Controlling Drug Metabolism by the Gut Microbiota to Improve Human Health
了解和控制肠道微生物群的药物代谢以改善人类健康
基本信息
- 批准号:10401799
- 负责人:
- 金额:$ 30.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAntineoplastic AgentsBeta-glucuronidaseBiological ModelsChemicalsDataDiarrheaDiclofenacDose-LimitingDrug TargetingDrug ToleranceDrug toxicityEnzymesExcretory functionFecesGastrointestinal tract structureGenerationsGlucuronic AcidsGlucuronidase InhibitorGlucuronidesGlucuronosyltransferaseGoalsHealthHemorrhageHumanIn VitroIndomethacinIntestinesInvestigationKnowledgeLeadLifeLinkLiverMediatingMetabolicMetagenomicsMusNon-Steroidal Anti-Inflammatory AgentsPatientsPerforationPharmaceutical PreparationsPharmacotherapyPhasePlayProcessProteinsProteomicsReactive InhibitionRoleSamplingSmall IntestinesStructureTestingTherapeuticTissuesToxic effectTreatment-related toxicityUlcerWorkXenobioticsbasedrug efficacydrug metabolismgastrointestinalgut microbiomegut microbiotaimprovedin vivoin vivo Modelindividual responseinhibitorinter-individual variationirinotecanmedication safetymicrobialmicrobiomemouse modelnew technologynovel strategiesnovel therapeutic interventionnovel therapeuticspreventresponsesuccesssugartherapy outcome
项目摘要
PROJECT SUMMARY
The human factors involved in drug metabolism are well understood, but the microbial enzymes that play
important roles in this process remain largely uncharacterized. Here we seek to fill this knowledge gap by
focusing on the gut microbial β-glucuronidase (GUS) proteins. GUS enzymes remove the glucuronic acid
moiety that is placed on a wide range of drugs and xenobiotics by human phase II drug metabolizing UDP-
glucuronosyltransferase proteins in the liver and other key metabolic tissues. The conjugation of a glucuronide
to a xenobiotic or drug nearly always inactivates it and very often marks it for elimination via the
gastrointestinal (GI) tract. Gut microbial GUS enzymes can reverse this process and reactivate drugs in the
intestines; as such, they are important drug metabolism enzymes. The reactivation of drug-glucuronides in the
intestines is known to cause the dose-limiting GI toxicity of therapeutics and is suspected to produce inter-
individual variabilities in drug responses. In the last few years, my group has begun to unravel the diversity,
function, and structure of gut microbial GUS enzymes and has developed initial microbiome-targeted inhibitors.
Through these efforts, we are beginning to elucidate the crucial roles these enzymes play in responding to the
xenobiotic- and drug-glucuronides that reach the gut. This proposal focuses on three drugs: the anticancer
chemotherapeutic irinotecan and two non-steroidal anti-inflammatory drugs, diclofenac and indomethacin.
Each is inactivated by glucuronidation and sent to the GI tract for excretion, each is reactivated within the
lumen of the GI tract by gut microbial GUS enzymes, and each reactivated drug causes dose-limiting gut
toxicities. Importantly, we have developed microbiome-targeted inhibitors that reduce, but do not eliminate, the
gut toxicity of these drugs. Considerably more work remains to realize the potential promise of this new
approach to improve human health through targeting the gut microbiome. To enable our success in these
efforts, we have developed a new activity-based probe-enabled proteomics pipeline to identify the gut microbial
GUS enzymes present in mouse and human fecal material. We will use this novel technology to understand at
the protein level how GUS enzymes change upon drug treatment or targeted inhibition. Our overarching
hypothesis is that gut microbial GUS enzymes reactivate a range of structurally distinct drug glucuronide
conjugates and cause GI toxicity, and that these proteins can be inhibited to prevent intestinal damage. We will
test this hypothesis by completing three focused in vitro, proteomics, and in vivo aims. Taken together, the
data we collect will significantly expand our understanding of drug metabolism by the gut microbiota, and will
potentially lead to novel therapeutics to improve human health.
项目摘要
众所周知,药物代谢所涉及的人为因素,但是发挥的微生物酶
在此过程中的重要作用在很大程度上仍然没有特征。在这里,我们试图通过
专注于肠道微生物β-葡萄糖醛酸酶(GUS)蛋白。 GUS酶去除葡萄糖酸
由人类II期药物代谢UDP-放置在广泛的药物和异种生物上的部分
肝和其他关键代谢组织中的葡萄糖醛酸转移酶蛋白。葡萄糖醛酸酯的结合
对于异生元或药物,几乎总是会使它失活,并且经常将其标记为消除
胃肠道(GI)。肠道微生物GUS酶可以扭转这一过程并重新激活药物
肠;因此,它们是重要的药物代谢酶。在
已知肠引起理论的剂量限制性GI毒性,并被怀疑会产生
药物反应中的个体变异性。在过去的几年中,我的小组已经开始揭示多样性,
肠道微生物GUS酶的功能和结构,并开发了初始微生物组靶向抑制剂。
通过这些努力,我们开始阐明这些酶在回应该酶中所起的关键作用
到达肠道的异生元和药物 - 葡萄糖醛酸苷。该提议重点介绍三种药物:抗癌
化学治疗性虹膜素和两种非甾体类抗炎药,双氯芬酸和吲哚美辛。
每个人都被谷化灭活并发送到胃肠道以进行排泄,每种都被重新激活
肠道微生物GUS酶的胃肠道腔,每种重新激活的药物会导致剂量限制肠
毒性。重要的是,我们开发了靶向微生物组的抑制剂,以减少但不会消除,
这些药物的肠道毒性。还有更多的工作要实现这一新的潜在希望
通过靶向肠道微生物组来改善人类健康的方法。为了使我们成功
努力,我们开发了一种新的基于活动的探针蛋白质组学管道来识别肠道微生物
小鼠和人类粪便中存在的GUS酶。我们将使用这种新颖的技术来理解
蛋白质水平在药物治疗或靶向抑制后如何变化GUS酶。我们的总体
假设是肠道微生物GUS酶重新激活一系列结构上不同的药物糖苷
结合并引起胃肠道毒性,并且可以抑制这些蛋白质以防止肠道损伤。我们将
通过完成三个重点在体外,蛋白质组学和体内目标来检验这一假设。总的来说,
我们收集的数据将大大扩展我们对肠道菌群对药物代谢的理解,并将
有可能导致新的治疗以改善人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew R Redinbo其他文献
Matthew R Redinbo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew R Redinbo', 18)}}的其他基金
Understanding and Controlling Drug Metabolism by the Gut Microbiota to Improve Human Health
了解和控制肠道微生物群的药物代谢以改善人类健康
- 批准号:
10616518 - 财政年份:2020
- 资助金额:
$ 30.47万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10438768 - 财政年份:2019
- 资助金额:
$ 30.47万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10205109 - 财政年份:2019
- 资助金额:
$ 30.47万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10019410 - 财政年份:2019
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8817985 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
9326146 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8931901 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
9128581 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
相似国自然基金
基于脱氢弯孢霉素骨架的ACLY降解剂的设计、合成及抗肿瘤活性研究
- 批准号:82304312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阳离子-π相互作用的“开/关”型纳米光敏剂的光敏活性调控及其抗肿瘤研究
- 批准号:82304434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
- 批准号:82303561
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PROTAC的选择性AKT1降解剂的设计、合成及抗肿瘤活性研究
- 批准号:82304287
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于PWWP域的NSD2蛋白降解剂的设计、合成与抗肿瘤活性研究
- 批准号:22307132
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Controlling Drug Metabolism by the Gut Microbiota to Improve Human Health
了解和控制肠道微生物群的药物代谢以改善人类健康
- 批准号:
10616518 - 财政年份:2020
- 资助金额:
$ 30.47万 - 项目类别:
Selection and preclinical development of a bacteria-targeting, non-antibiotic lead candidate to improve cancer chemotherapy outcomes
选择和临床前开发一种针对细菌的非抗生素主要候选药物,以改善癌症化疗结果
- 批准号:
10006516 - 财政年份:2018
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8817985 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
9326146 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8931901 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别: