A custom microchip amplifier for patch clamp electrophysiological recording
用于膜片钳电生理记录的定制微芯片放大器
基本信息
- 批准号:8520846
- 负责人:
- 金额:$ 18.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AmplifiersArchitectureAutomationAwardBoxingCell modelCellsComputer softwareComputersCustomDataDevelopmentDevicesElectric CapacitanceElectrodesElectronicsElectrophysiology (science)Emerging TechnologiesEvaluationFinancial compensationGlassGoalsIn VitroIndividualIon ChannelKilogramLifeManufacturer NameMarketingMeasurementMeasuresMedical ResearchMembraneMicroscopeMonitorNeuronsNeurosciencesNobel PrizeNoisePatch-Clamp TechniquesPharmacologic SubstancePhasePostage StampsProductionProtocols documentationResearchResearch PersonnelResistanceRoboticsScientistSeriesSignal TransductionSiliconSpecific qualifier valueStreamSynapsesSystemTechniquesTechnologyTestingTrainingWorkanalogcostdesigndigitalin vivoinnovationinstrumentinstrumentationmicrochipmicromanipulatornew technologynovelopen sourcepatch clampprogramsprototypepublic health relevancerelating to nervous systemresearch studysoftware developmentsuccesstooltrendvoltagevoltage clamp
项目摘要
DESCRIPTION (provided by applicant): Patch clamp electrophysiology has been a central tool of neuroscience and pharmaceutical research since its advent in the late 1970s. Whole-cell patch clamping utilizes glass micropipettes and sensitive analog electronics to monitor the ion-channel currents and intracellular voltages of individual neurons or other cells. For decades, this
has been performed by highly trained scientists using micromanipulators under a microscope to painstakingly guide an electrode to contact (or "patch clamp") a single cell. Once in contact, large, expensive amplifier modules are used to monitor or manipulate the small cellular electrical signals. In the last ten years, advances in automation have led to the development of inexpensive robotic systems capable of automatically patch clamping many neurons in vivo in minutes, with success rates matching or exceeding those of skilled investigators. As a result of this innovation, patch clamp techniques are being adapted to a wider variety of experimental protocols and target species, and researchers are now recording from multiple cells simultaneously. However, the size and expense of the traditional rack-mounted amplifier electronics systems present a significant bottleneck in the continued development of large-scale highly automated intracellular recording systems. Single-channel amplifiers capable of current-clamp and voltage- clamp measurements are typically large rack-mounted boxes weighing several kilograms and costing nearly $10,000 per channel. At least eight companies produce such instruments, which represent the dominant component of modern patch clamp recording systems in terms of size, mass, and cost. The move to multi- channel automated systems will only exacerbate this problem. Intan Technologies proposes to integrate all the sensitive electronics needed for patch clamp recording onto a small, low-power, inexpensive silicon microchip ("PatchChip") that will replace traditional patch clamp amplifiers. The use of advanced microelectronics will reduce the bulky and expensive amplifier systems down to the size of a postage stamp. Integrated amplifiers could be mounted in close proximity to each micropipette in a large-scale automated recording system, reducing noise pickup and size. The PatchChip will have the capability to conduct both voltage-clamp and current-clamp measurements, and will have sufficient sensitivity to resolve picoampere-level synaptic currents and millivolt-level intracellular voltages. A novel circuit architecture eliminates the need for off-chip precision resistors and allows for standard patch clamp functions like series resistance compensation and fast transient capacitance compensation. An easy-to-use USB interface circuit board will be designed for the chip; this evaluation system with open-source software will allow instrumentation manufacturers to incorporate this new technology into advanced patch clamp systems.
描述(由申请人提供):自 20 世纪 70 年代末出现以来,膜片钳电生理学一直是神经科学和药物研究的核心工具。全细胞膜片钳利用玻璃微量移液器和敏感的模拟电子器件来监测单个神经元或其他细胞的离子通道电流和细胞内电压。几十年来,这
是由训练有素的科学家在显微镜下使用显微操作器精心引导电极接触(或“膜片钳”)单个细胞。一旦接触,就会使用大型、昂贵的放大器模块来监视或操纵小的蜂窝电信号。在过去的十年中,自动化的进步导致了廉价机器人系统的发展,该系统能够在几分钟内自动对体内许多神经元进行膜片钳,其成功率与熟练研究人员的成功率相当或超过。由于这项创新,膜片钳技术正在适应更广泛的实验方案和目标物种,研究人员现在可以同时从多个细胞进行记录。然而,传统机架式放大器电子系统的尺寸和费用成为大规模高度自动化细胞内记录系统持续发展的重大瓶颈。能够进行电流钳和电压钳测量的单通道放大器通常是重达数公斤的大型机架安装盒,每个通道的成本接近 10,000 美元。至少有八家公司生产此类仪器,从尺寸、质量和成本来看,它们代表了现代膜片钳记录系统的主要组成部分。转向多渠道自动化系统只会加剧这个问题。 Intan Technologies 提议将膜片钳记录所需的所有敏感电子器件集成到小型、低功耗、廉价的硅微芯片(“PatchChip”)上,以取代传统的膜片钳放大器。先进微电子学的使用将把笨重且昂贵的放大器系统缩小到邮票的大小。集成放大器可以安装在大型自动记录系统中靠近每个微量移液器的位置,从而减少噪声拾取和尺寸。 PatchChip 将能够进行电压钳和电流钳测量,并且具有足够的灵敏度来解析皮安级突触电流和毫伏级细胞内电压。新颖的电路架构消除了对片外精密电阻的需求,并允许标准膜片钳功能,例如串联电阻补偿和快速瞬态电容补偿。将为该芯片设计一个易于使用的USB接口电路板;这个带有开源软件的评估系统将使仪器制造商能够将这项新技术融入先进的膜片钳系统中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reid Harrison其他文献
Reid Harrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reid Harrison', 18)}}的其他基金
A custom microchip amplifier for patch clamp electrophysiological recording
用于膜片钳电生理记录的定制微芯片放大器
- 批准号:
8919470 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
A custom microchip amplifier for patch clamp electrophysiological recording
用于膜片钳电生理记录的定制微芯片放大器
- 批准号:
9128717 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
A custom microchip amplifier for patch clamp electrophysiological recording
用于膜片钳电生理记录的定制微芯片放大器
- 批准号:
8832629 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 18.48万 - 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications andTranscriptome
组蛋白修饰和转录组的高通量单细胞联合分析
- 批准号:
10698374 - 财政年份:2023
- 资助金额:
$ 18.48万 - 项目类别:
Automating Assessment of Contextualization of Care During the Clinical Encounter
在临床遇到的情况下自动评估护理情境化
- 批准号:
10595446 - 财政年份:2023
- 资助金额:
$ 18.48万 - 项目类别:
A State-of-the-Art Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Alzheimer's Disease and Related Dementias
最先进的自动语音识别和对话平台,为阿尔茨海默病和相关痴呆症患者提供社交辅助机器人
- 批准号:
10699887 - 财政年份:2023
- 资助金额:
$ 18.48万 - 项目类别: