Intrathecal Gene Therapy Expressing IGF-1 for Amyotrophic Lateral Sclerosis
表达 IGF-1 的鞘内基因疗法治疗肌萎缩侧索硬化症
基本信息
- 批准号:8622976
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAmyotrophic Lateral SclerosisAnimal ModelAnimalsApoptoticAstrocytesAttenuatedBindingBiological PreservationBolus InfusionCellsCessation of lifeClinicClinical TrialsDataDenervationDependovirusDiffusionDiseaseDisease ProgressionDisease modelDoseEffectivenessEmployee StrikesEquilibriumExhibitsFamily suidaeFibrinogenFoundationsFrequenciesFutureGeneticHeterogeneityHumanIndividualInjection of therapeutic agentInsulin-Like Growth Factor IIntrathecal InjectionsIntravenousLeadLongevityMeasuresMediatingMethodsMicrogliaModalityModelingMotorMotor NeuronsMuscleMuscle denervation procedureMuscular AtrophyNatureNeuritesNeuromuscular DiseasesNeuromuscular JunctionNeuronsOnset of illnessPatientsPersonsProceduresRattusRecombinant ProteinsRegimenRespiratory FailureRodent ModelRouteSafetySerotypingSignal TransductionSiteSpinal CordSymptomsTechniquesTestingTherapeuticToxicologyTranslatingWorkbaseclinical applicationdosageeffective therapygene therapygraspinflammatory markerloss of functionmotor function improvementmuscle formnerve supplyneuron losspre-clinicalpublic health relevancereceptorresearch studyresponseretrograde transportscale uptransgene expressionvector
项目摘要
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disorder striking about 1 person in 40,000
each year. Individuals with ALS exhibit rapid loss of muscle control, muscle atrophy, and death due to
respiratory failure. The cause of ALS is the progressive denervation of muscle by motor neurons. There is
currently no cure for this disease, and the only approved therapy has a very modest effect on the disease
progression. Clearly, there is a pressing need for more effective therapies. One possible route would be to
use neuroprotective factors which, due to their general mode of action, may have utility in other neuromuscular
disorders as well. Our long-term objective for this project is to develop gene therapy for ALS. Previous studies
have investigated the use of neuroprotective factors. These molecules, such as insulin-like growth factor 1
(IGF-1) provide anti-apoptotic signals for motor neurons as well as promoting neurite outgrowth. These
molecules seemed promising in animal studies. However, clinical trials demonstrated that scaling the dose to
humans poses daunting challenges. A more effective approach might be to use gene therapy to allow the
patients' own cells to produce the therapeutic factor. Several studies, including our own, have shown this
approach has merit. However, these studies used techniques that have not scaled up well in larger animal
models. Intraparenchymal injection into the spinal cord results in only localized transgene expression and thus
would require an unreasonably large number of injections in humans. Retrograde transport in motor neurons
of vector injected into muscle was also effective in a rodent model of ALS, but again would likely have limited
clinical applicability due to the muscle mass that would need to be injected. In this proposal we will investigate
efficacy of intrathecally administered gene therapy expressing IGF-1 in the SOD1-G93A rat model of ALS. In
Specific Aim 1, we show that our gene therapy can promote motor neuron survival and protect the integrity of
neuromuscular junctions. In addition we will show that this therapy attenuates the activation of astrocytes and
microglia that helps contribute to the destruction of motor neurons. Furthermore, we will investigate the
possibility that motor neurons can develop tolerance to elevated levels of IGF-1, a phenomenon that could limit
the effectiveness of this therapy long-term. In Specific Aim 2, we will show that the improvements found in Aim
1 translate into improved motor function and increased life span. SOD1 rats will be evaluated using the grip
strength, rotarod, and open field tests to evaluate several aspects of motor function. In addition, life span, age
at disease onset, and the rate of disease progression will be measured to show efficacy. This study will
provide the proof-of-principle data necessary to support future clinical trials of this approach.
肌萎缩性脊髓侧索硬化症 (ALS) 是一种毁灭性的神经肌肉疾病,每 40,000 人中就有 1 人患有这种疾病
每年。患有 ALS 的个体表现出肌肉控制力的快速丧失、肌肉萎缩,并因以下原因而死亡:
呼吸衰竭。 ALS 的病因是运动神经元对肌肉进行性去神经支配。有
目前尚无治愈这种疾病的方法,唯一批准的疗法对该疾病的效果非常有限
进展。显然,迫切需要更有效的治疗方法。一种可能的路线是
使用神经保护因子,由于其一般作用模式,可能在其他神经肌肉中有用
失调也。我们这个项目的长期目标是开发 ALS 的基因疗法。之前的研究
研究了神经保护因子的使用。这些分子,例如胰岛素样生长因子 1
(IGF-1) 为运动神经元提供抗凋亡信号并促进神经突生长。这些
分子在动物研究中似乎很有前途。然而,临床试验表明,将剂量调整至
人类提出了严峻的挑战。更有效的方法可能是使用基因疗法
患者自身的细胞产生治疗因子。多项研究,包括我们自己的研究,都表明了这一点
方法有其优点。然而,这些研究使用的技术尚未在大型动物中很好地推广
模型。脊髓实质内注射仅导致局部转基因表达,因此
需要对人体进行不合理的大量注射。运动神经元的逆行运输
注射到肌肉中的载体在 ALS 啮齿动物模型中也有效,但同样可能有限
由于需要注射的肌肉量而具有临床适用性。在本提案中,我们将调查
在 ALS 的 SOD1-G93A 大鼠模型中鞘内给予表达 IGF-1 的基因治疗的疗效。在
具体目标 1,我们证明我们的基因疗法可以促进运动神经元存活并保护运动神经元的完整性
神经肌肉接头。此外,我们将证明这种疗法会减弱星形胶质细胞的激活和
小胶质细胞有助于破坏运动神经元。此外,我们还将调查
运动神经元可能会对 IGF-1 水平升高产生耐受性,这种现象可能会限制
这种疗法的长期有效性。在 Specific Aim 2 中,我们将展示 Aim 中发现的改进
1 转化为改善的运动功能和延长的寿命。 SOD1 大鼠将使用握力进行评估
力量、旋转和旷场测试来评估运动功能的多个方面。另外,寿命、年龄
在疾病发作时,将测量疾病进展的速度以显示疗效。这项研究将
提供支持该方法未来临床试验所需的原理验证数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICHOLAS M BOULIS其他文献
NICHOLAS M BOULIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICHOLAS M BOULIS', 18)}}的其他基金
Hierarchically-Structured Conduits with Programmed Release of Neurotrophic Factors for Repairing Large Defects in Thick Nerves
具有程序化释放神经营养因子的分层结构导管用于修复粗神经的大缺损
- 批准号:
10579569 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Lentiviral-Induced Swine Model of Spinal Cord Glioma
慢病毒诱导的猪脊髓胶质瘤模型
- 批准号:
10400131 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Lentiviral-Induced Swine Model of Spinal Cord Glioma
慢病毒诱导的猪脊髓胶质瘤模型
- 批准号:
10208273 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Lentiviral-Induced Swine Model of Spinal Cord Glioma
慢病毒诱导的猪脊髓胶质瘤模型
- 批准号:
10630906 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Nanofiber Conduits with a Honeycomb Structure for Repairing Large Defects in Thick Nerves
具有蜂窝结构的纳米纤维导管用于修复粗神经的大缺损
- 批准号:
8858995 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
Intrathecal Gene Therapy Expressing IGF-1 for Amyotrophic Lateral Sclerosis
表达 IGF-1 的鞘内基因疗法治疗肌萎缩侧索硬化症
- 批准号:
8719821 - 财政年份:2013
- 资助金额:
$ 19.5万 - 项目类别:
相似国自然基金
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
- 批准号:
10833734 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
The Impact of Beta- and Gamma-synucleins on Alpha-synuclein's Synaptic Function
β 和 γ 突触核蛋白对 α 突触核蛋白突触功能的影响
- 批准号:
10830522 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
- 批准号:
10696512 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
METTL3-mediated regulation of motor neuron function
METTL3介导的运动神经元功能调节
- 批准号:
10781077 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Age Differences and Mechanisms of Ketogenic Diet Induced Bone Loss
生酮饮食导致骨质流失的年龄差异和机制
- 批准号:
10740305 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别: