Hierarchically-Structured Conduits with Programmed Release of Neurotrophic Factors for Repairing Large Defects in Thick Nerves
具有程序化释放神经营养因子的分层结构导管用于修复粗神经的大缺损
基本信息
- 批准号:10579569
- 负责人:
- 金额:$ 33.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAnatomyAnimalsAutologous TransplantationAxonBenchmarkingBiochemicalBiochemistryBiomedical EngineeringCellular biologyChick EmbryoClinicCuesDefectDistalEncapsulatedEngravingsFaceFacial nerve structureFatty AcidsFiberFilopodiaGoalsGrowthGrowth ConesHalf-LifeHealthIndividualInjuryKineticsKnowledgeLesionMasksMechanicsModelingMotorNanotechnologyNerveNerve RegenerationNeuritesNeurosurgeonOperative Surgical ProceduresPerformancePeripheral NervesPeripheral nerve injuryPersonsProceduresProcessProductivityProtocols documentationQuality of lifeRattusRecovery of FunctionResearchResearch PersonnelRouteScientistSiteSpinal GangliaStructureSurfaceSurgical suturesSystemTechnologyTestingThickTranslatingTubular formationUnited StatesUniversitiesWeldingWorkbiocompatible polymerbiodegradable polymercontrolled releasecrosslinkdesignefficacy evaluationfabricationfetalhealingimprovedin vitro Modelinjury and repairinnovationloss of functionmanmedical schoolsnanoscalenerve repairnerve stem cellneurosurgeryneurotrophic factornovelparticleporcine modelrepairedsciatic nerve
项目摘要
PROJECT SUMMARY/ABSTRACT
This project aims to develop, validate, and translate a novel class of nerve guidance conduits (NGCs) for the
surgical repair and healing of large defects in thick peripheral nerves by restoring their continuity and functions.
The research team includes an innovative and productive expert in nanotechnology from the Department of
Biomedical Engineering at the Georgia Institute of Technology and a top neurosurgeon and scientist from the
Department of Neurosurgery at Emory University School of Medicine. Guided by the anatomic structure of
peripheral nerve, as well as the biochemistry and cell biology involved in injury and repair, the investigators
design, fabricate, and validate multi-tubular conduits (mNGCs) using fibers electrospun from a biocompatible
and biodegradable polymer. The mNGC is typically constructed by wrapping a honeycomb array of 3 or 7
small, single-tubular conduits inside a large, single-tubular conduit. The wall of each conduit contains three
layers: uniaxially-aligned fibers to longitudinally guide axonal extension for both the inner and outer layers,
together with random fibers (welded at cross points) sandwiched in between to circumvent tearing or collapsing
during surgery. Besides the topographic cue associated with the aligned fibers, the surface of each fiber in the
inner layer is further engraved with longitudinal nanogrooves to accelerate neurite outgrowth by providing more
sensing targets and contact pads to the filopodia in the growth cone. In addition, neurotrophic factors (NTFs)
are loaded in hollow microparticles of natural fatty acids and then photo-cross-linked to create a unidirectional
gradient in degradation half-life along the conduit. The proposed activities are broadly divided into three major
thrusts: i) controlling the degradation rate of hollow microparticles made of natural fatty acids and thus release
kinetics of NTFs through photo-cross-linking; ii) evaluating the 3-in-1 mNGCs for sciatic nerve repair in a rat
model; and iii) assessing the 7-in-1 mNGCs for facial nerve repair in a porcine model. The NGCs are
anticipated to augment nerve regeneration as a result of the synergistic effect arising from the aligned fibers,
the nanogrooves on the surface of the fibers, and the steady supply of NTFs, improving the health and quality
of life for individuals afflicted by peripheral nerve injuries.
项目概要/摘要
该项目旨在开发、验证和转化一类新型神经引导导管(NGC),用于
通过恢复粗大周围神经的连续性和功能,对粗大的周围神经进行手术修复和愈合。
该研究团队包括来自纳米技术系的一位创新且富有成效的专家
佐治亚理工学院的生物医学工程和顶尖的神经外科医生和科学家
埃默里大学医学院神经外科系。以解剖结构为指导
周围神经,以及参与损伤和修复的生物化学和细胞生物学,研究人员
使用生物相容性静电纺丝纤维设计、制造和验证多管导管 (mNGC)
和可生物降解的聚合物。 mNGC 通常由 3 或 7 个蜂窝状阵列包裹而成
大型单管导管内装有小型单管导管。每个导管的壁包含三个
层:单轴排列的纤维纵向引导内层和外层的轴突延伸,
与夹在中间的随机纤维(在交叉点焊接)一起以避免撕裂或塌陷
手术期间。除了与排列的纤维相关的地形提示外,每根纤维的表面
内层进一步刻有纵向纳米凹槽,通过提供更多的能量来加速神经突的生长
生长锥中丝状伪足的传感目标和接触垫。此外,神经营养因子(NTF)
装载在天然脂肪酸的中空微粒中,然后光交联以形成单向
沿着导管的降解半衰期梯度。拟议的活动大致分为三大类
推力:i)控制由天然脂肪酸制成的中空微粒的降解速率,从而释放
通过光交联的 NTF 动力学; ii) 评估 3 合 1 mNGC 在大鼠坐骨神经修复中的作用
模型; iii) 在猪模型中评估 7 合 1 mNGC 的面神经修复效果。 NGC 是
由于排列纤维产生的协同效应,预计会增强神经再生,
纤维表面纳米沟槽,NTF稳定供应,提升健康品质
周围神经损伤患者的生命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICHOLAS M BOULIS其他文献
NICHOLAS M BOULIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICHOLAS M BOULIS', 18)}}的其他基金
Lentiviral-Induced Swine Model of Spinal Cord Glioma
慢病毒诱导的猪脊髓胶质瘤模型
- 批准号:
10400131 - 财政年份:2021
- 资助金额:
$ 33.94万 - 项目类别:
Lentiviral-Induced Swine Model of Spinal Cord Glioma
慢病毒诱导的猪脊髓胶质瘤模型
- 批准号:
10630906 - 财政年份:2021
- 资助金额:
$ 33.94万 - 项目类别:
Lentiviral-Induced Swine Model of Spinal Cord Glioma
慢病毒诱导的猪脊髓胶质瘤模型
- 批准号:
10208273 - 财政年份:2021
- 资助金额:
$ 33.94万 - 项目类别:
Nanofiber Conduits with a Honeycomb Structure for Repairing Large Defects in Thick Nerves
具有蜂窝结构的纳米纤维导管用于修复粗神经的大缺损
- 批准号:
8858995 - 财政年份:2015
- 资助金额:
$ 33.94万 - 项目类别:
Intrathecal Gene Therapy Expressing IGF-1 for Amyotrophic Lateral Sclerosis
表达 IGF-1 的鞘内基因疗法治疗肌萎缩侧索硬化症
- 批准号:
8622976 - 财政年份:2013
- 资助金额:
$ 33.94万 - 项目类别:
Intrathecal Gene Therapy Expressing IGF-1 for Amyotrophic Lateral Sclerosis
表达 IGF-1 的鞘内基因疗法治疗肌萎缩侧索硬化症
- 批准号:
8719821 - 财政年份:2013
- 资助金额:
$ 33.94万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
Voltage Imaging of Astrocyte-Neuron Interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
10711423 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别: