Elucidating the mechanisms of transient polymyxin resistance in pathogenic E. coli.
阐明致病性大肠杆菌瞬时多粘菌素耐药机制。
基本信息
- 批准号:10224796
- 负责人:
- 金额:$ 2.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-05-09
- 项目状态:已结题
- 来源:
- 关键词:Anogenital regionAntibiotic ResistanceAntibiotic TherapyAntibioticsAttentionBacteriaBacterial ChromosomesBase SequenceCationsCellsCodeCuesDataDiseaseElementsEnsureEnterobacteriaceaeEnvironmentEnzymesEscherichia coliEventExhibitsFrequenciesGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsHeterogeneityImmuneIn VitroIndividualInfectionIronLeadLipid AMembraneMinimum Inhibitory Concentration measurementModificationMolecular BiologyOmpR proteinOperating SystemOutputPathogenicityPhosphotransferasesPhylogenetic AnalysisPolymyxin BPolymyxin B resistancePolymyxin ResistancePopulationProbioticsPropertyReceptor SignalingRecurrenceRegulationRegulonReporterReportingResearchResistanceResortRoleSalmonellaSignal TransductionSignal Transduction PathwaySpecificityStressSystemTestingTranscriptional ActivationUntranslated RNAUp-RegulationUrethraUrinary tractUrinary tract infectionUropathogenic E. coliVirulenceWorkantimicrobialbacterial fitnessbacterial resistancecolistin resistanceextracellularfitnessflexibilitygenetic elementgenome-wide analysisglobal healthgut colonizationinsightinterdisciplinary approachmembermicrobialmouse modelpathogenic Escherichia colipathogenic bacteriapolypeptidepreventprogramsprotein-histidine kinaseresistance mechanismresponsesensorsensor histidine kinase
项目摘要
Defining Differences in how LPS modification is Regulated in Different E. coli pathotypes
Project Summary
Cells encounter a constant barrage of extracellular cues to which they respond using only the finite number of
signal transduction pathways encoded within their genome. While we understand how individual signal
transduction systems operate, little is known about how distinct signaling systems interact to integrate
information and/or expand their signal responses. The overall goal of this project is to understand how signaling
flexibility benefits the responses of different E. coli strains to cationic polypeptides. Although much attention is
placed on the acquisition of antibiotic resistance markers by the Enterobacteriaceae, there is increasing evidence
that bacteria can also mount transient resistance to antibiotics via the upregulation of chromosomally encoded
markers. For example, the pmrC gene encoded by Salmonella spp and E. coli species is an orthologue of the
mcr-1 gene that imparts resistance to colistin antibiotics. We have recently demonstrated that transient
resistance to polymyxin B arises in strains of uropathogenic E. coli, following stimulation with ferric iron. We
subsequently found that the transient polymyxin B resistance is brought about via the activation of the PmrB
sensor kinase, a member of the PmrAB two-component system (TCS). Bacterial TCSs comprise a membrane-
embedded histidine kinase that is the signal receptor, and a response regulator protein that directs the
corresponding cellular changes. Although there are sequence-based determinants that dictate specificity among
cognate TCS partners, we discovered strong interactions between the PmrAB and QseBC TCSs, in which the
PmrB histidine kinase readily activates both its cognate partner PmrA and the non-cognate response regulator
QseB in response to ferric iron, leading to a 16-fold increase in the MIC. I hypothesize that coordinated regulation
of PmrA and QseB leads to upregulation of genes critical for lipid A modification that in turn protects bacteria
from the insults of polymyxin B and other cationic polypeptides. I will test this hypothesis in three aims, in which
I will: (1) Define the PmrA and QseB regulons in response to polymyxin B and define the mechanism by which
PmrA and QseB activation leads to polymyxin B resistance. (2) Determine how the QseBC and PmrAB
interactions have evolved to benefit bacterial fitness in different niches, and; (3) Ascertain how the amount of
conservation present in the QseBC-PmrAB signaling cascade in E. coli strains from different phylogenetic clades
and with different pathogenic strategies. Towards these goals, an inter-disciplinary approach will be followed,
encompassing molecular biology, genome-wide analyses of transcription and robust murine models of infection.
Combined these studies will provide mechanistic details into a mechanism that allows bacteria to survive one of
the last resort antibiotics and will provide insights into the conservation of the QseBC- PmrAB circuitry in different
E. coli pathotypes.
定义不同大肠杆菌致病型中 LPS 修饰调节方式的差异
项目概要
细胞遇到持续不断的细胞外信号,它们仅使用有限数量的信号做出反应
其基因组中编码的信号转导途径。虽然我们了解个体信号如何
转导系统如何运作,人们对不同信号系统如何相互作用整合知之甚少
信息和/或扩展其信号响应。该项目的总体目标是了解信号如何传递
灵活性有利于不同大肠杆菌菌株对阳离子多肽的反应。虽然备受关注
越来越多的证据表明肠杆菌科细菌获得抗生素抗性标记
细菌还可以通过染色体编码的上调对抗生素产生短暂的耐药性
标记。例如,沙门氏菌和大肠杆菌编码的 pmrC 基因是
mcr-1 基因赋予粘菌素抗生素耐药性。我们最近证明了瞬态
在三价铁刺激后,泌尿道致病性大肠杆菌菌株会产生对多粘菌素 B 的耐药性。我们
随后发现短暂的多粘菌素 B 耐药是通过 PmrB 的激活引起的
传感器激酶,PmrAB 双组分系统 (TCS) 的成员。细菌 TCS 包含膜
嵌入的组氨酸激酶是信号受体,以及指导反应的反应调节蛋白
相应的细胞变化。尽管存在基于序列的决定因素决定了之间的特异性
同源 TCS 合作伙伴,我们发现 PmrAB 和 QseBC TCS 之间存在很强的相互作用,其中
PmrB 组氨酸激酶很容易激活其同源伙伴 PmrA 和非同源反应调节因子
QseB 对三价铁的反应,导致 MIC 增加 16 倍。我假设协调监管
PmrA 和 QseB 会导致对脂质 A 修饰至关重要的基因上调,从而保护细菌
免受多粘菌素 B 和其他阳离子多肽的侵害。我将从三个目标来检验这个假设,其中
我将: (1) 定义响应多粘菌素 B 的 PmrA 和 QseB 调节子,并定义其机制
PmrA 和 QseB 激活导致多粘菌素 B 耐药。 (2) 确定QseBC和PmrAB如何
相互作用的发展有利于不同生态位的细菌适应性; (3) 确定金额
来自不同系统发育分支的大肠杆菌菌株中 QseBC-PmrAB 信号级联中存在的保守性
并具有不同的致病策略。为了实现这些目标,将遵循跨学科的方法,
涵盖分子生物学、全基因组转录分析和强大的小鼠感染模型。
这些研究相结合,将为细菌在其中一种环境下生存的机制提供机制细节。
抗生素的最后手段,并将提供有关 QseBC-PmrAB 电路在不同环境下的保护的见解
大肠杆菌致病型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie N Hurst其他文献
Melanie N Hurst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie N Hurst', 18)}}的其他基金
Elucidating the mechanisms of transient polymyxin resistance in pathogenic E. coli.
阐明致病性大肠杆菌瞬时多粘菌素耐药机制。
- 批准号:
9759582 - 财政年份:2019
- 资助金额:
$ 2.49万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
- 批准号:
10699065 - 财政年份:2023
- 资助金额:
$ 2.49万 - 项目类别:
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 2.49万 - 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 2.49万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 2.49万 - 项目类别:
A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
- 批准号:
10586250 - 财政年份:2023
- 资助金额:
$ 2.49万 - 项目类别: