A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
基本信息
- 批准号:10224953
- 负责人:
- 金额:$ 23.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAmerican College of RadiologyAwardBiotechnologyCaringClient satisfactionClinicalClinical DataClinical InformaticsCommunicationComplexComputer Vision SystemsData ScienceData SetDevelopmentDevelopment PlansFormulationGenerationsGoalsHealth ServicesHospitalsHybridsImageKnowledgeLearningLinkMachine LearningMedicalMentorsMethodsMissionModelingMusNamesNatural Language ProcessingNatureNomenclatureNorth AmericaOntologyOutcomePathway interactionsPatientsPhasePhysiciansPicture Archiving and Communication SystemProcessProductivityPublic HealthRadiology SpecialtyReportingResearchResearch PersonnelResortSocietiesStandardizationStructureSystemSystems DevelopmentTechniquesTechnologyTerminologyTextTimeTrainingUnited States National Institutes of HealthVoiceWritingbasecareercareer developmentconvolutional neural networkdeep learningdeep neural networkimpressionimprovedinnovationknowledge graphlexicallong short term memoryneural networkneural network architecturenovelradiologistrepositoryresponsesyntaxtext searching
项目摘要
PROJECT SUMMARY/ABSTRACT
In radiology practices, timely and accurate formulation of reports is closely linked to patient satisfaction,
physician productivity, and reimbursement. While the American College of Radiology and the Radiological Soci-
ety of North America have recommended implementation of structured reporting to facilitate clear and consistent
communication between radiologists and referring clinicians, cumbersome nature of current structured reporting
systems made them unpopular amongst their users. Recently, the emerging techniques of deep learning have
been widely and successfully applied in many different natural language processing tasks (NLP). However, when
adopted in a certain specific domain, such as radiology, these techniques should be combined with extensive
domain knowledge to improve efficiency and accuracy. There is, therefore, a critical need to take advantage of
clinical NLP and deep learning to fundamentally change the radiology reporting. The long-term goal in this appli-
cation is to improve the form, content, and quality of radiology reports and to facilitate rapid generation of radiol-
ogy reports with consistent organization and standardized texts. The overall objective is to use radiology-specific
ontology, NLP and computer vision techniques, and deep learning to construct a radiology-specific knowledge
graph, which will then be used to build a reporting system that can assist radiologists to quickly generate struc-
tured and standardized text reports. The rationale for this project is that through integration of new clinical NLP
technologies, radiology-specific knowledge graphs, and development of new reporting system, we can build au-
tomatous systems with a higher-level understanding of the radiological world. The specific aims of this project are
to: (1) recognize and normalize named entities in radiology reports; (2) construct a radiology-specific knowledge
graph from free-text and images; and (3) build a reporting system that can dynamically adjust templates based
on radiologists' prior entries. The research proposed in this application is innovative, in the applicant's opinion,
because it combines deep learning, NLP techniques, and domain knowledge in a single framework to construct
comprehensive and accurate knowledge graphs that will enhance the workflow of the current reporting systems.
The proposed research is significant because a novel reporting system can expedite radiologists' workflow and
acquire well-annotated datasets that facilitate machine learning and data science. To develop such a method,
the candidate, Dr. Yifan Peng, requires additional training and mentoring in clinical NLP and radiology. During
the K99 phase, Dr. Peng will conduct this research as a research fellow at the National Center for Biotechnology
Information. He will be mentored by Dr. Zhiyong Lu, a leading text mining and deep learning researcher, and co-
mentored by Dr. Ronald M. Summers, a leading radiologist and clinical informatics researcher. This application
for the NIH Pathway to Independence Award (K99/R00) describes a career development plan that will allow Dr.
Peng to achieve the career goals of becoming an independent investigator and leader in the study of clinical NLP.
项目摘要/摘要
在放射学实践中,及时,准确的报告公式与患者满意度密切相关,
医师生产率和报销。而美国放射学和放射学学院
北美的Ety建议实施结构化报告,以促进清晰,一致的
放射科医生与参考临床医生之间的沟通,当前结构化报告的繁琐性质
系统使他们在用户中不受欢迎。最近,深度学习的新兴技术已经
被广泛应用于许多不同的自然语言处理任务(NLP)。但是,什么时候
在某个特定领域(例如放射学)中采用的这些技术应与广泛的
领域知识以提高效率和准确性。因此,迫切需要利用
临床NLP和深度学习从根本上改变放射学报告。这项应用的长期目标
阳离子是为了改善放射学报告的形式,内容和质量,并促进快速产生放射性
OGY报告具有一致的组织和标准化文本。总体目的是使用放射学特异性
本体论,NLP和计算机视觉技术以及深入学习以构建放射学知识
图,然后将用于构建一个报告系统,该系统可以帮助放射科医生快速生成结构 -
特征和标准化的文本报告。该项目的理由是通过整合新的临床NLP
技术,放射学特定知识图和新报告系统的开发,我们可以建立
对放射学世界有更高层次了解的静态系统。该项目的特定目的是
至:(1)放射学报告中公认和标准化的实体; (2)构建放射学的知识
自由文本和图像的图; (3)建立一个可以动态调整基于模板的报告系统
关于放射学家的先前条目。该应用程序认为,本申请中提出的研究具有创新性
因为它结合了深度学习,NLP技术和领域知识,以构建
全面,准确的知识图将增强当前报告系统的工作流程。
拟议的研究非常重要,因为新型的报告系统可以加快放射科医生的工作流程,并且
获取良好的数据集,以促进机器学习和数据科学。为了开发这样的方法,
候选人Yifan Peng博士需要在临床NLP和放射学上进行额外的培训和心理。期间
K99阶段,Peng博士将在国家生物技术中心作为研究研究员进行这项研究
信息。他将由领先的文本挖掘和深度学习研究人员的卢博士召集他,并共同
由放射科医生和临床信息研究员Ronald M. Summers博士指导。此应用程序
对于NIH独立奖(K99/R00),描述了一项职业发展计划,该计划将允许博士
彭(Peng)实现了成为临床NLP研究的独立研究者和领导者的职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yifan Peng其他文献
Yifan Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yifan Peng', 18)}}的其他基金
Achieving Model Fairness on Automatic Primary Open-angle Glaucoma Screening
实现自动原发性开角型青光眼筛查的模型公平性
- 批准号:
10726928 - 财政年份:2023
- 资助金额:
$ 23.65万 - 项目类别:
Closing the loop with an automatic referral population and summarization system
通过自动转介人群和汇总系统形成闭环
- 批准号:
10720778 - 财政年份:2023
- 资助金额:
$ 23.65万 - 项目类别:
A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
- 批准号:
10197509 - 财政年份:2020
- 资助金额:
$ 23.65万 - 项目类别:
A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
- 批准号:
10458538 - 财政年份:2020
- 资助金额:
$ 23.65万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DeepCertainty: Deep Learning for Contextual Diagnostic Uncertainty Measurement in Radiology Reports
DeepCertainty:放射学报告中上下文诊断不确定性测量的深度学习
- 批准号:
10593770 - 财政年份:2023
- 资助金额:
$ 23.65万 - 项目类别:
Contrast Enhanced Mammography (CEM) to Reduce Biopsy Rates for Less Than Highly Suspicious Breast Abnormalities: a Prospective Study
对比增强乳房X光检查(CEM)可降低高度可疑乳房异常的活检率:一项前瞻性研究
- 批准号:
10366445 - 财政年份:2021
- 资助金额:
$ 23.65万 - 项目类别:
A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
- 批准号:
10197509 - 财政年份:2020
- 资助金额:
$ 23.65万 - 项目类别:
A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
- 批准号:
10458538 - 财政年份:2020
- 资助金额:
$ 23.65万 - 项目类别:
Caregivers' Reactions and Experience: Imaging Dementia Evidence for Amyloid Scanning CARE IDEAS
护理人员的反应和经验:淀粉样蛋白扫描的痴呆症影像证据 护理理念
- 批准号:
9978567 - 财政年份:2017
- 资助金额:
$ 23.65万 - 项目类别: