Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial

优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验

基本信息

  • 批准号:
    10223435
  • 负责人:
  • 金额:
    $ 60.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Behavioral obesity treatment produces clinically significant weight loss and reduced disease risk/severity for many individuals with overweight/obesity and cardiovascular disease. Yet, about half of patients fall short of expected outcomes, which can be largely attributed to lapses from the recommended diet. Our work has shown that dietary lapses (specific instances of nonadherence to dietary goals) are frequent during weight loss attempts (~3-4 times per week), associated with poorer weight losses, and triggered by momentary changing states (e.g., changes in mood or availability of palatable food). Thus, there is a clear need for innovative solutions that can provide dynamic in-the-moment interventions to improve adherence to the prescribed diet in obesity treatment. Our research team was the first to develop a smartphone-based just-in-time adaptive intervention (JITAI) that includes: 1) daily ecological momentary assessment (EMA; repeated sampling via mobile device) of relevant behavioral, psychological, and environmental triggers for lapse; 2) a machine learning algorithm that uses information gathered via EMA to determine real-time lapse risk; & 3) delivery of brief intervention during high-risk moments. Our pilot work revealed that the JITAI was feasible, acceptable, and produced reductions in average lapse frequency. However, we have not yet shown a direct effect of the JITAI on eating behavior in the moment of heightened lapse risk and know little about the types of interventions that are most effective for reducing lapse. We therefore propose to extend our research via a micro- randomized trial (MRT), a methodology that involves random assignment to intervention (or control) at a specific decision point, i.e., when our algorithm predicts heightened risk for a lapse. The MRT will determine whether a specific intervention in a specific moment had its intended effect. We will therefore port our JITAI to a more scalable online platform and conduct a MRT to evaluate the effects of a generic lapse risk alert message and theory-driven just-in-time interventions on dietary lapses. After refinement testing with n=15 to ensure proper technical functioning of our updated JITAI, adults with overweight/obesity (n=159) will participate in a well-established 12-week online obesity treatment program + JITAI, with 12 weeks of JITAI-only follow-up. When an individual is at risk for lapsing s/he will be randomized to no intervention, a generic risk alert, or one of 4 theory-driven interventions with interactive skills training. The outcome of interest will be the occurrence (or lack thereof) of dietary lapse, as measured both subjectively (i.e., via EMA) and objectively (i.e., via wrist- based intake monitoring), in the hours following randomization. Results of the MRT will inform an optimized algorithm for intervention delivery that will drive the finalized JITAI. A future RCT will compare weight loss in obesity treatment with and without the optimized JITAI. This highly innovative approach will advance the science of adherence by supporting the development of sophisticated theoretical models of adherence behavior and informing JITAIs that target adherence to other health behaviors (e.g., medication, activity goals).
项目概要/摘要 行为肥胖治疗可产生临床上显着的体重减轻并降低疾病风险/严重程度 许多患有超重/肥胖和心血管疾病的人。然而,大约一半的患者达不到 预期结果,这在很大程度上可归因于推荐饮食的失误。我们的工作有 研究表明,减肥过程中经常出现饮食失误(不遵守饮食目标的具体情况) 尝试(每周约 3-4 次),与较差的减肥效果相关,并由瞬时变化触发 状态(例如情绪的变化或可口食物的可用性)。因此,显然需要创新 可以提供动态即时干预措施的解决方案,以提高对规定饮食的依从性 肥胖症治疗。我们的研究团队是第一个开发基于智能手机的即时自适应 干预(JITAI),包括:1)每日生态瞬时评估(EMA;通过 移动设备)相关的行为、心理和环境触发因素; 2) 一台机器 使用通过 EMA 收集的信息来确定实时失误风险的学习算法; & 3) 交付 在高风险时刻进行短暂干预。我们的试点工作表明,JITAI 是可行的、可接受的、 并降低了平均失效频率。然而,我们尚未显示出该措施的直接影响。 JITAI对失范风险升高时的饮食行为的看法,但对干预措施的类型知之甚少 对于减少失误最有效。因此,我们建议通过微观扩展我们的研究 随机试验(MRT),一种涉及随机分配干预(或对照)的方法 具体的决策点,即当我们的算法预测失误风险较高时。 MRT将决定 特定时刻的特定干预是否达到了预期效果。因此,我们将把 JITAI 移植到 一个更具可扩展性的在线平台并进行 MRT 来评估通用失效风险警报的效果 信息和理论驱动的对饮食失误的及时干预。经过 n=15 的细化测试后 确保我们更新的 JITAI 的技术正常运行,超重/肥胖的成年人 (n=159) 将参加 在完善的 12 周在线肥胖治疗计划 + JITAI 中,仅进行 12 周的 JITAI 随访。 当一个人有衰退风险时,他/她将被随机分配到不干预、一般风险警报或一项 4 种理论驱动的干预措施和互动技能培训。感兴趣的结果将是发生 (或缺乏)饮食失误,通过主观(即通过 EMA)和客观(即通过腕带)测量 基于摄入量监测),在随机化后的几个小时内进行。 MRT 的结果将告知优化 干预实施的算法将推动最终的 JITAI。未来的随机对照试验将比较体重减轻情况 使用和不使用优化的 JITAI 进行肥胖治疗。这种高度创新的方法将推动 通过支持复杂的依从性理论模型的发展来实现依从性科学 行为并告知 JITAI,以遵守其他健康行为(例如药物、活动目标)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Paige Goldstein其他文献

Stephanie Paige Goldstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Paige Goldstein', 18)}}的其他基金

Validating Sensor-based Approaches for Monitoring Eating Behavior and Energy Intake by Accounting for Real-World Factors that Impact Accuracy and Acceptability
通过考虑影响准确性和可接受性的现实因素来验证基于传感器的饮食行为和能量摄入监测方法
  • 批准号:
    10636986
  • 财政年份:
    2023
  • 资助金额:
    $ 60.78万
  • 项目类别:
Using Multimodal Real-Time Assessment to Phenotype Dietary Non-Adherence Behaviors that Contribute to Poor Outcomes in Behavioral Obesity Treatment
使用多模式实时评估对导致行为性肥胖治疗效果不佳的饮食不依从行为进行表型分析
  • 批准号:
    10418847
  • 财政年份:
    2022
  • 资助金额:
    $ 60.78万
  • 项目类别:
Using Multimodal Real-Time Assessment to Phenotype Dietary Non-Adherence Behaviors that Contribute to Poor Outcomes in Behavioral Obesity Treatment
使用多模式实时评估对导致行为性肥胖治疗效果不佳的饮食不依从行为进行表型分析
  • 批准号:
    10615122
  • 财政年份:
    2022
  • 资助金额:
    $ 60.78万
  • 项目类别:
Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial
优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验
  • 批准号:
    10029156
  • 财政年份:
    2020
  • 资助金额:
    $ 60.78万
  • 项目类别:
Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial
优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验
  • 批准号:
    10622324
  • 财政年份:
    2020
  • 资助金额:
    $ 60.78万
  • 项目类别:
Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial
优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验
  • 批准号:
    10427366
  • 财政年份:
    2020
  • 资助金额:
    $ 60.78万
  • 项目类别:

相似国自然基金

单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 60.78万
  • 项目类别:
Development of a Novel Virtual Reality Treatment for Emerging Adults with ADHD
开发一种针对患有多动症的新兴成人的新型虚拟现实治疗方法
  • 批准号:
    10721084
  • 财政年份:
    2023
  • 资助金额:
    $ 60.78万
  • 项目类别:
HEART Camp Connect: Promoting Adherence to Exercise in Adults with Heart Failure with Preserved Ejection Fraction
HEART Camp Connect:促进射血分数保留的心力衰竭成人患者坚持锻炼
  • 批准号:
    10657083
  • 财政年份:
    2023
  • 资助金额:
    $ 60.78万
  • 项目类别:
Medication Adherence and Cardio-Metabolic Control Indicators among Adult American Indians Receiving Tribal Health Services
接受部落卫生服务的成年美洲印第安人的药物依从性和心脏代谢控制指标
  • 批准号:
    10419967
  • 财政年份:
    2022
  • 资助金额:
    $ 60.78万
  • 项目类别:
Whole-Body VR for Pediatric Yoga Therapy
用于小儿瑜伽治疗的全身 VR
  • 批准号:
    10481791
  • 财政年份:
    2022
  • 资助金额:
    $ 60.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了