Early Events in Protein Folding
蛋白质折叠的早期事件
基本信息
- 批准号:10217148
- 负责人:
- 金额:$ 35.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntiviral AgentsBindingBiological ProcessCapsid ProteinsCell physiologyCellsCessation of lifeCollaborationsComplexCoupledCouplingCytosolDehydrationDiseaseDisease OutbreaksDrug resistanceEconomic BurdenEndosomesEquilibriumEventEvolutionFluorescenceFluorescence Resonance Energy TransferFree EnergyGoalsHIVHemagglutininImmunologicsInfectionInfluenzaInfluenza HemagglutininIon ChannelIsotopesKineticsLasersLengthLinkLipid BilayersLipidsMapsMediatingMembraneMembrane FluidityMembrane FusionMembrane ProteinsMethodologyMethodsModelingMolecularMolecular ConformationMolecular MachinesMotionNaturePathogenesisPathologic ProcessesPeptidesPharmaceutical PreparationsPhaseProcessProtein DynamicsProteinsProtonsPublic HealthReactionResearchRibonucleoproteinsRoleSeriesShapesSolventsSpecificitySpectrum AnalysisStructureSystemTertiary Protein StructureTestingTimeTransmembrane DomainTransmembrane TransportTransport ProcessViralViral ProteinsVirus DiseasesVirus ReplicationWaterWorkbasedrug developmentflexibilityinfluenza M2influenza infectioninfluenzavirusinsightinterestmolecular dynamicsmutantneglectnovel strategiespandemic diseasepeptide structurepreventprotein foldingprotein functionprotein structureresponsesimulationsingle-molecule FRETtime usetransmission processvirus envelope
项目摘要
Project Summary/Abstract
The structure-function paradigm is a powerful guiding principle that underlies much of our understanding
of biological processes. What is often neglected in this picture, however, is the flexibility of protein structures.
This flexibility is necessary for a protein to fold to its native, active structure. Furthermore, protein function
requires evolution of this native structure with time. Therefore, the dynamics of the protein structure and
associated solvent water provide the critical connection between structure and function. The overall goal of
this proposal is to elucidate the functional dynamics of hemagglutinin and M2 proton channel that enable
influenza virus infection, a problem with significant public health implications. The mechanisms explored in
this work are also relevant to other enveloped viruses, in particular HIV. More generally, membrane fusion
and proton transport through proteins are of high fundamental interest and we expect the insight gained in
these specific studies will contribute to the understanding of a broad range of related systems. We plan to
pursue three specific aims:
1) Determine the mechanism of hemagglutinin mediated membrane fusion. We will test a new model for
protein mediated membrane fusion that is based on molecular dynamics simulations of this process. We have
developed unique methodology base on a laser induced pH jump to initiate the fusion process, and structure
specific spectroscopic methods to characterize the hemagglutinin refolding dynamics that drive membrane
fusion. This viral protein serves as an archetype for understanding the general mechanism of membrane
fusion as a ubiquitous membrane transport process.
2) Determine the mechanism of fusion pore formation. We will test the hypothesis that the hemagglutinin
trans-membrane domain (TMD) and fusion peptide (FP) form an oligomeric complex that opens and stabilizes
the fusion pore.
3) Determine the molecular mechanism of actively gated proton transport. This work will on a focus on
the influenza M2 proton channel, an important model ion channel. Understanding transport of protons through
protein channels is critical to many essential biological processes as well as replication of the influenza virus.
These aims are linked intellectually by energy landscape concepts and operationally by the methodology
developed in our lab for studying both protein and membrane dynamics. Our unique approach will allow us to
identify specific protein motions involved in protein mediated membrane fusion and proton channel activation.
We expect this work to provide important new insight into the factors that shape the energy landscape of
membrane proteins and the coupled membrane dynamics.
项目概要/摘要
结构-功能范式是一个强有力的指导原则,是我们许多理解的基础
的生物过程。然而,这张图中经常被忽视的是蛋白质结构的灵活性。
这种灵活性对于蛋白质折叠成其天然的活性结构是必要的。此外,蛋白质功能
需要这种原生结构随着时间的推移而演变。因此,蛋白质结构的动力学和
相关的溶剂水提供了结构和功能之间的关键联系。总体目标为
该提案旨在阐明血凝素和 M2 质子通道的功能动力学,从而使
流感病毒感染是一个对公共卫生产生重大影响的问题。探索的机制
这项工作也与其他包膜病毒有关,特别是艾滋病毒。更一般地,膜融合
和质子通过蛋白质的运输具有很高的根本意义,我们期望在
这些具体研究将有助于理解广泛的相关系统。我们计划
追求三个具体目标:
1) 确定血凝素介导的膜融合机制。我们将测试一个新模型
蛋白质介导的膜融合基于该过程的分子动力学模拟。我们有
开发了基于激光诱导 pH 跃变的独特方法来启动融合过程和结构
用于表征驱动膜的血凝素重折叠动力学的特定光谱方法
融合。这种病毒蛋白可以作为理解膜一般机制的原型
融合作为普遍存在的膜运输过程。
2)确定熔孔形成机理。我们将检验血凝素的假设
跨膜结构域 (TMD) 和融合肽 (FP) 形成寡聚复合物,可打开并稳定
融合孔。
3)确定主动门控质子传输的分子机制。这项工作将重点关注
流感M2质子通道,一种重要的模型离子通道。了解质子通过
蛋白质通道对于许多重要的生物过程以及流感病毒的复制至关重要。
这些目标在智力上通过能源景观概念联系起来,在操作上通过方法论联系起来
我们的实验室开发用于研究蛋白质和膜动力学。我们独特的方法将使我们能够
识别参与蛋白质介导的膜融合和质子通道激活的特定蛋白质运动。
我们期望这项工作能够为塑造能源格局的因素提供重要的新见解。
膜蛋白和耦合膜动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD BRIAN DYER其他文献
RICHARD BRIAN DYER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD BRIAN DYER', 18)}}的其他基金
Proton Transfer Dynamics in Heme-Copper Oxidases
血红素铜氧化酶中的质子转移动力学
- 批准号:
6893238 - 财政年份:2004
- 资助金额:
$ 35.64万 - 项目类别:
Administrative Supplement: Early Events in Protein Folding
行政补充:蛋白质折叠的早期事件
- 批准号:
10387732 - 财政年份:1996
- 资助金额:
$ 35.64万 - 项目类别:
相似国自然基金
基于激发植物免疫为导向的嘧啶酮类高效抗病毒剂设计合成及作用机制研究
- 批准号:21807037
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
云南地方晾晒烟中的内源性抗烟草花叶病毒活性成分研究
- 批准号:31860100
- 批准年份:2018
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
基于kealiinine类海洋生物碱的新型抗病毒剂的设计合成、构效关系及作用机制研究
- 批准号:21772145
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
两种植物中抗烟草花叶病毒先导化合物的结构优化、构效关系及作用机制研究
- 批准号:31760089
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
生态农药的分子设计与作用机制
- 批准号:21732002
- 批准年份:2017
- 资助金额:300.0 万元
- 项目类别:重点项目
相似海外基金
Development of antibody drug conjugates as pan-filo antivirals
开发作为泛型抗病毒药物的抗体药物偶联物
- 批准号:
10759731 - 财政年份:2023
- 资助金额:
$ 35.64万 - 项目类别:
High throughput screening and drug discovery for antagonists of the Ebola VP40 protein assembly
埃博拉 VP40 蛋白组装拮抗剂的高通量筛选和药物发现
- 批准号:
10760573 - 财政年份:2023
- 资助金额:
$ 35.64万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 35.64万 - 项目类别:
Liver Targeting Dihydroquinolizinone (DHQ) Molecules as Hepatitis B Virus Antivirals with Reduced Toxicity
肝脏靶向二氢喹嗪酮 (DHQ) 分子作为乙型肝炎病毒抗病毒药物,毒性降低
- 批准号:
10593566 - 财政年份:2023
- 资助金额:
$ 35.64万 - 项目类别:
mRNA-encoded Cas13 as a pan-respiratory antiviral
mRNA 编码的 Cas13 作为泛呼吸道抗病毒药物
- 批准号:
10637171 - 财政年份:2023
- 资助金额:
$ 35.64万 - 项目类别: