Targeting Escherichia coli PBP1b using fragment-based approaches
使用基于片段的方法靶向大肠杆菌 PBP1b
基本信息
- 批准号:10217694
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAutolysisBacteriaBacterial Antibiotic ResistanceBindingBiological AssayCarbapenemsCell DeathCell WallCenters for Disease Control and Prevention (U.S.)CephalosporinsComplementComplexCrystallizationDataDevelopmentDoseDrug TargetingEnterobacteriaceaeEscherichia coliEscherichia coli ProteinsExtended-spectrum β-lactamaseGenesGoalsHypersensitivityLabelLeadLibrariesLightLinkLuciferasesMeasurementMechanicsMediatingMembraneMicrobiologyMolecular ConformationMolecular WeightMonobactamsMutationNosocomial InfectionsOutcomePenicillin-Binding ProteinsPeptidesPeptidoglycanPeptidyltransferaseProtein InhibitionProteinsResistanceResistance developmentResortScanningSepsisShapesSiteStructureSystemTestingUp-RegulationUrinary tract infectionVDAC1 genebasebeta-Lactam Resistancebeta-Lactamasebeta-Lactamsbiophysical toolscarbapenem-resistant Enterobacteriaceaecrosslinkdesignefflux pumpfitnessglobal healthhigh rewardhigh riskinhibitor/antagonistmortalitynovelnovel strategiesnovel therapeutic interventionoverexpressionpathogenpathogenic bacteriaperiplasmresistance mechanismresponsescreeningsuccess
项目摘要
Penicillin-binding proteins (PBPs) are proven β-lactam drug targets yet resistance to β-lactam antibiotics,
such as carbapenems and cephalosporins, has resulted in a global health problem. In particular, extended-
spectrum β-lactamase (ESBL) producing or carbapenem-resistant Enterobacteriaceae, which includes
Escherichia coli, are serious threats and are often linked to hospital-acquired infections. Bloodstream
infections caused by these pathogens have a high mortality rate. β-lactam antimicrobial resistance
mechanism in E. coli are multiple and include, for example, the expression of β-lactamases that can degrade
β-lactams, deletion of porins, and the overexpression of efflux pumps. Resistance is developing even
against new β-lactam/β-lactamase inhibitor combinations. This alarming resistance spurs the need to
develop different mechanisms of PBP inhibition to break this resistance cycle.
PBP1b, one of the key PBPs in E. coli, has two peptidoglycan (PG)-related catalytic activities: a
transglycosylase activity and a transpeptidase activity. Both activities build the PG mesh that provides critical
mechanical strength and shape for bacteria. PBP1b is activated by LpoB binding to PBP1b, leading to a
conformational change that stimulates both activities of PBP1b. Our goal is to develop a novel approach to
inhibiting PBP1b, by targeting the activation of PBP1b by LpoB. Deletion of LpoB or mutations in LpoB
that disrupt PBP1b binding leads to hypersensitivity to certain β-lactam antibiotics.
Aim 1: We propose to develop inhibitors of PBP1b activation by screening and developing compounds
that bind to the PBP1b-recognition site on activator LpoB via a fragment-based structural approach. We will
use thermal shift and split luciferase complementation assays to screen fragment library compounds. Hits
from these orthogonal assays are further probed using dose-response measurements, biophysical tools,
and a TG activity assay testing for a decrease of LpoB-mediated activation of PBP1b.
Aim 2: Fragment hits will be targeted for crystallographic analysis in complex with LpoB. The combined
structural information, affinity, activity, and thermal shift data will be used to design novel LpoB-directed
inhibitors in an iterative fashion. Top lead compounds will advance to microbiological testing.
The successful completion of our comprehensive high-risk/high-reward PPI targeting approach will lead
to a new strategy of re-sensitizing PBP-targeting antibiotics, which is urgently needed in light of the
current antibiotic resistance problem. The LpoB:PBP1b system is conserved in Enterobacteriaceae so our
results could extend to other pathogens. Furthermore, the successful outcome of this proposal could lead
to a paradigm shift in antibiotic development, re-focusing efforts on targeting PPIs in bacterial pathogens.
青霉素结合蛋白 (PBP) 已被证明是 β-内酰胺药物靶标,但对 β-内酰胺抗生素具有耐药性,
碳青霉烯类和头孢菌素类药物已导致全球健康问题。
产β-内酰胺酶(ESBL)或耐碳青霉烯类肠杆菌科细菌,其中包括
大肠杆菌是严重的威胁,通常与医院获得性血液感染有关。
这些病原体引起的感染具有很高的死亡率。
大肠杆菌中的机制是多种的,包括,例如,可以降解的 β-内酰胺酶的表达
β-内酰胺、孔蛋白的缺失和外排泵的过度表达甚至正在发展。
针对新的 β-内酰胺/β-内酰胺酶抑制剂组合的这种惊人的耐药性刺激了对新的 β-内酰胺/β-内酰胺酶抑制剂组合的需求。
开发不同的 PBP 抑制机制来打破这种耐药循环。
PBP1b 是大肠杆菌中的关键 PBP 之一,具有两种肽聚糖 (PG) 相关的催化活性:
转糖基酶活性和转肽酶活性均构建了提供关键作用的 PG 网格。
LpoB 与 PBP1b 结合可激活细菌的机械强度和形状,从而产生
我们的目标是开发一种新的方法来刺激 PBP1b 的两种活性。
通过 LpoB 缺失或 LpoB 突变来靶向激活 PBP1b,从而抑制 PBP1b。
破坏 PBP1b 结合会导致对某些 β-内酰胺抗生素过敏。
目标1:我们建议通过筛选和开发化合物来开发PBP1b激活抑制剂
通过基于片段的结构方法与激活剂 LpoB 上的 PBP1b 识别位点结合。
使用热位移和裂解荧光素酶互补测定来筛选片段库化合物。
使用剂量反应测量、生物物理工具进一步探讨这些正交测定中的结果,
TG 活性测定检测 LpoB 介导的 PBP1b 激活的减少。
目标 2:将目标片段与 LpoB 复合物进行晶体学分析。
结构信息、亲和力、活性和热位移数据将用于设计新型 LpoB 导向的
顶级先导化合物将以迭代方式进行微生物测试。
我们全面的高风险/高回报 PPI 目标方法的成功完成将引领
鉴于目前迫切需要一种使 PBP 靶向抗生素重新敏感的新策略
目前的抗生素耐药性问题。LpoB:PBP1b 系统在肠杆菌科细菌中是保守的,因此我们的研究
此外,该提案的成功结果可能会导致其他病原体。
抗生素开发的范式转变,重新集中精力针对细菌病原体中的 PPI。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FOCCO VAN DEN AKKER其他文献
FOCCO VAN DEN AKKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FOCCO VAN DEN AKKER', 18)}}的其他基金
Developing novel pyrazolidinone antibiotics targeting PBP3 to overcome resistance mechanisms
开发针对 PBP3 的新型吡唑烷酮抗生素以克服耐药机制
- 批准号:
10590839 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Targeting Escherichia coli PBP1b using fragment-based approaches
使用基于片段的方法靶向大肠杆菌 PBP1b
- 批准号:
10374158 - 财政年份:2021
- 资助金额:
$ 20.13万 - 项目类别:
Small molecule inhibitors of lytic transglycosylase to potentiate beta-lactam antibiotics
裂解性转糖基酶小分子抑制剂可增强 β-内酰胺抗生素的作用
- 批准号:
10078254 - 财政年份:2020
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
8362188 - 财政年份:2011
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
8170149 - 财政年份:2010
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
7954491 - 财政年份:2009
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE AND SIGNAL TRANSDUCTION
抗生素耐药性和信号转导的晶体学研究
- 批准号:
7726243 - 财政年份:2008
- 资助金额:
$ 20.13万 - 项目类别:
Mechanistic studies and inhibition strategies for antibiotic resistance
抗生素耐药性的机制研究和抑制策略
- 批准号:
7884373 - 财政年份:2007
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE AND SIGNAL TRANSDUCTION
抗生素耐药性和信号转导的晶体学研究
- 批准号:
7602310 - 财政年份:2007
- 资助金额:
$ 20.13万 - 项目类别:
Mechanistic studies and inhibition strategies for antibiotic resistance
抗生素耐药性的机制研究和抑制策略
- 批准号:
7658125 - 财政年份:2007
- 资助金额:
$ 20.13万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
FimH-Targeting Antibody-Recruiting Molecules as Novel Drugs for Preventing Complicated Urinary Tract Infections
FimH 靶向抗体招募分子作为预防复杂性尿路感染的新药
- 批准号:
10603693 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Elucidation of the mechanisms of jumbophage genome protection during infection
阐明感染过程中巨噬细胞基因组保护机制
- 批准号:
10606835 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别: