Targeting Escherichia coli PBP1b using fragment-based approaches
使用基于片段的方法靶向大肠杆菌 PBP1b
基本信息
- 批准号:10217694
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAutolysisBacteriaBacterial Antibiotic ResistanceBindingBiological AssayCarbapenemsCell DeathCell WallCenters for Disease Control and Prevention (U.S.)CephalosporinsComplementComplexCrystallizationDataDevelopmentDoseDrug TargetingEnterobacteriaceaeEscherichia coliEscherichia coli ProteinsExtended-spectrum β-lactamaseGenesGoalsHypersensitivityLabelLeadLibrariesLightLinkLuciferasesMeasurementMechanicsMediatingMembraneMicrobiologyMolecular ConformationMolecular WeightMonobactamsMutationNosocomial InfectionsOutcomePenicillin-Binding ProteinsPeptidesPeptidoglycanPeptidyltransferaseProtein InhibitionProteinsResistanceResistance developmentResortScanningSepsisShapesSiteStructureSystemTestingUp-RegulationUrinary tract infectionVDAC1 genebasebeta-Lactam Resistancebeta-Lactamasebeta-Lactamsbiophysical toolscarbapenem-resistant Enterobacteriaceaecrosslinkdesignefflux pumpfitnessglobal healthhigh rewardhigh riskinhibitor/antagonistmortalitynovelnovel strategiesnovel therapeutic interventionoverexpressionpathogenpathogenic bacteriaperiplasmresistance mechanismresponsescreeningsuccess
项目摘要
Penicillin-binding proteins (PBPs) are proven β-lactam drug targets yet resistance to β-lactam antibiotics,
such as carbapenems and cephalosporins, has resulted in a global health problem. In particular, extended-
spectrum β-lactamase (ESBL) producing or carbapenem-resistant Enterobacteriaceae, which includes
Escherichia coli, are serious threats and are often linked to hospital-acquired infections. Bloodstream
infections caused by these pathogens have a high mortality rate. β-lactam antimicrobial resistance
mechanism in E. coli are multiple and include, for example, the expression of β-lactamases that can degrade
β-lactams, deletion of porins, and the overexpression of efflux pumps. Resistance is developing even
against new β-lactam/β-lactamase inhibitor combinations. This alarming resistance spurs the need to
develop different mechanisms of PBP inhibition to break this resistance cycle.
PBP1b, one of the key PBPs in E. coli, has two peptidoglycan (PG)-related catalytic activities: a
transglycosylase activity and a transpeptidase activity. Both activities build the PG mesh that provides critical
mechanical strength and shape for bacteria. PBP1b is activated by LpoB binding to PBP1b, leading to a
conformational change that stimulates both activities of PBP1b. Our goal is to develop a novel approach to
inhibiting PBP1b, by targeting the activation of PBP1b by LpoB. Deletion of LpoB or mutations in LpoB
that disrupt PBP1b binding leads to hypersensitivity to certain β-lactam antibiotics.
Aim 1: We propose to develop inhibitors of PBP1b activation by screening and developing compounds
that bind to the PBP1b-recognition site on activator LpoB via a fragment-based structural approach. We will
use thermal shift and split luciferase complementation assays to screen fragment library compounds. Hits
from these orthogonal assays are further probed using dose-response measurements, biophysical tools,
and a TG activity assay testing for a decrease of LpoB-mediated activation of PBP1b.
Aim 2: Fragment hits will be targeted for crystallographic analysis in complex with LpoB. The combined
structural information, affinity, activity, and thermal shift data will be used to design novel LpoB-directed
inhibitors in an iterative fashion. Top lead compounds will advance to microbiological testing.
The successful completion of our comprehensive high-risk/high-reward PPI targeting approach will lead
to a new strategy of re-sensitizing PBP-targeting antibiotics, which is urgently needed in light of the
current antibiotic resistance problem. The LpoB:PBP1b system is conserved in Enterobacteriaceae so our
results could extend to other pathogens. Furthermore, the successful outcome of this proposal could lead
to a paradigm shift in antibiotic development, re-focusing efforts on targeting PPIs in bacterial pathogens.
青霉素结合蛋白(PBP)是被证明的β-内酰胺药物靶标,但对β-内酰胺抗生素的抗性,
例如碳青霉烯和头孢菌素,导致了全球健康问题。特别是扩展
频谱β-内酰胺酶(ESBL)产生或抗碳青霉烯型肠杆菌科,其中包括
大肠杆菌是严重威胁,通常与医院获得的感染有关。血液
这些病原体引起的感染具有高死亡率。 β-内酰胺抗菌抗性
大肠杆菌中的机制是多种的,包括可以降解的β-内酰胺酶的表达
β-内酰胺,porin的缺失和外排泵的过表达。抵抗甚至正在发展
针对新的β-内酰胺/β-内酰胺酶抑制剂组合。这种令人震惊的阻力激发了
开发PBP抑制的不同机制以打破这种抗性周期。
PBP1B是大肠杆菌中的关键PBP之一,具有两个辣椒(PG)相关的催化活性:A
转糖基化酶活性和转肽酶活性。这两种活动都建立了提供关键的PG网格
细菌的机械强度和形状。 PBP1B被LPOB与PBP1B结合激活,导致A
构象变化刺激PBP1B的两种活动。我们的目标是开发一种新颖的方法
通过靶向LPOB靶向PBP1B的激活来抑制PBP1B。 LPOB或LPOB突变的删除
破坏PBP1b的结合会导致对某些β-内酰胺抗生素的过敏。
目标1:我们建议通过筛选和开发化合物来开发PBP1B激活的抑制剂
通过基于片段的结构方法,激活剂LPOB上的PBP1B-识别位点结合。我们将
使用热偏移和分裂荧光素酶完成测定法进行筛选片段库化合物。命中
从这些正交分析中,使用剂量反应测量,生物物理工具,进一步探测
以及LPOB介导的PBP1B激活减少的TG活性评估测试。
AIM 2:片段命中将被针对与LPOB复合物进行晶体学分析。组合
结构信息,亲和力,活动和热偏移数据将用于设计新型LPOB指导
以迭代方式抑制剂。顶级铅化合物将推进微生物学测试。
成功完成我们全面的高风险/高回报PPI定位方法将领导
为重新敏感PBP靶向抗生素的新策略,鉴于
当前的抗生素抗性问题。 LPOB:PBP1B系统是在肠杆菌科中配置的
结果可以扩展到其他病原体。此外,该提议的成功结果可能会导致
为了改变抗生素发育的范式,重新集中了针对细菌病原体中PPI的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FOCCO VAN DEN AKKER其他文献
FOCCO VAN DEN AKKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FOCCO VAN DEN AKKER', 18)}}的其他基金
Developing novel pyrazolidinone antibiotics targeting PBP3 to overcome resistance mechanisms
开发针对 PBP3 的新型吡唑烷酮抗生素以克服耐药机制
- 批准号:
10590839 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Targeting Escherichia coli PBP1b using fragment-based approaches
使用基于片段的方法靶向大肠杆菌 PBP1b
- 批准号:
10374158 - 财政年份:2021
- 资助金额:
$ 20.13万 - 项目类别:
Small molecule inhibitors of lytic transglycosylase to potentiate beta-lactam antibiotics
裂解性转糖基酶小分子抑制剂可增强 β-内酰胺抗生素的作用
- 批准号:
10078254 - 财政年份:2020
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
8362188 - 财政年份:2011
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
8170149 - 财政年份:2010
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
7954491 - 财政年份:2009
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE AND SIGNAL TRANSDUCTION
抗生素耐药性和信号转导的晶体学研究
- 批准号:
7726243 - 财政年份:2008
- 资助金额:
$ 20.13万 - 项目类别:
Mechanistic studies and inhibition strategies for antibiotic resistance
抗生素耐药性的机制研究和抑制策略
- 批准号:
7884373 - 财政年份:2007
- 资助金额:
$ 20.13万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE AND SIGNAL TRANSDUCTION
抗生素耐药性和信号转导的晶体学研究
- 批准号:
7602310 - 财政年份:2007
- 资助金额:
$ 20.13万 - 项目类别:
Mechanistic studies and inhibition strategies for antibiotic resistance
抗生素耐药性的机制研究和抑制策略
- 批准号:
7658125 - 财政年份:2007
- 资助金额:
$ 20.13万 - 项目类别:
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
- 批准号:42307038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
- 批准号:32301448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
FimH-Targeting Antibody-Recruiting Molecules as Novel Drugs for Preventing Complicated Urinary Tract Infections
FimH 靶向抗体招募分子作为预防复杂性尿路感染的新药
- 批准号:
10603693 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Elucidation of the mechanisms of jumbophage genome protection during infection
阐明感染过程中巨噬细胞基因组保护机制
- 批准号:
10606835 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别: