Bacterial polyphosphates in sepsis
败血症中的细菌多磷酸盐
基本信息
- 批准号:10210680
- 负责人:
- 金额:$ 53.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-22 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAffinity ChromatographyAgonistAlpha GranuleBacteriaBacterial InfectionsBinding ProteinsBiologicalBlood PlateletsBlood coagulationBradykininCellsCellular Indexing of Transcriptomes and Epitopes by SequencingChemicalsCoagulation ProcessColonComplement ActivationDataEnvironmentEscherichia coliEventFDA approvedFutureGlycolysisGnotobioticGrowthHeterogeneityHost DefenseHumanImmuneImmune responseImmunityIncubatedInfectionInflammationIntegration Host FactorsInterventionIntestinal MucosaInvadedKnowledgeLabelLengthLightLinkMammalian CellMeasuresMediatingMetabolicMetabolismModelingMolecularMolecular ChaperonesMononuclearMorbidity - disease rateMucous MembraneMusNatural ImmunityNutrientOrganismOrthophosphateOutcomePathogenesisPatientsPeritonealPeritoneal SepsisPhagocytesPharmaceutical PreparationsPolymersPolyphosphate kinasePolyphosphatesPreventionProductionProteinsProteomicsReactionRecombinantsReportingResearchResearch Project GrantsRoleSaccharomyces cerevisiaeSamplingSepsisSeveritiesShapesSignal PathwaySignal TransductionSourceSterilityStressSurrogate EndpointTLR4 geneTestingTherapeuticWorkarginasebacterial metabolismbasececal ligation puncturechemokinecytokinefightinghost-microbe interactionsimprovedinflammatory milieuinorganic phosphateinsightmacrophagemast cellmetabolic phenotypemonocytemortalitymutantneutrophilnovelpathogenpolymicrobial sepsisproteogenomicsrecruitresponseresponse to injurytranscriptome
项目摘要
Project Summary: Sepsis remains a leading cause of morbidity and mortality with almost 50 million cases per
year worldwide. In the absence of FDA-approved drugs, there is a high demand for better insights into the host-
microbe interactions that define the molecular pathogenesis of sepsis. Polyphosphates are linear polymers of
inorganic phosphate (Pi) residues that are present in all living organisms. The metabolism of bacteria
accumulates long-chains of polyphosphates (Pi: n≥1,000) in contrast to the short-chain polyphosphates (Pi:
n<100) typically found in mammalian cells. The biologic effects are dependent on chain length. Emerging data
suggest that short-chain polyphosphates modulate blood coagulation and inflammation, while the role of long-
chain, bacteria-derived, polyphosphates in sepsis is an understudied research field. Our preliminary work
suggests that neutralization of polyphosphates or bacterial polyphosphate deficiency improves survival of
peritoneal sepsis induced by cecum ligation and puncture (CLP) in mice. In sterile macrophage cultures, long-
chain polyphosphates modulate LPS/TLR4-induced macrophage polarization, iNOS expression and immuno-
metabolism. Here, we propose to test the central hypothesis that bacterial polyphosphates are lethal metabolites
in sepsis because of their detrimental interference with the innate host response to infection. To shed light into
the biological activities of polyphosphates, we propose to address 3 specific aims: (1) To study the effects of
polyphosphate neutralization, we will use a recombinant exopolyphosphatase (PPX) protein and characterize its
activities on the host response to polymicrobial CLP sepsis. A single-cell proteogenomics approach (CITE-Seq)
will aim to capture the heterogeneity/polarization of invading professional phagocytes as a function of
polyphosphates. The polyphosphates will be measured in sepsis samples of mice and humans. (2) To
characterize the direct interference of polyphosphates with the functions of cultured macrophages, we will
combine bacterial TLR agonists with synthetic polyphosphates of different chain length. It will be studied if
polyphosphates curb STAT/IRF signaling pathways for modulating iNOS, L-arginase, cytokines/chemokines,
and metabolic reprogramming (OXPHOS, glycolysis). In addition, affinity purification combined with label-free
proteomics will aim for the identification of novel polyphosphate targeted proteins in macrophages; to better
understand the mechanisms how polyphosphates interfere with phagocyte responses in sepsis. (3) In gnotobiotic
mice, monocolonized with a polyphosphate-deficient E. coli mutant (Δppk), we will investigate how bacteria-
derived polyphosphates shape innate immunity before and after monomicrobial CLP sepsis. Peritoneal and
intestinal mucosal macrophages will be characterized and compared for their functions, transcriptome plasticity
and immuno-metabolic phenotypes. This research project will provide novel insights into the unexplored activities
of bacterial polyphosphates within the networks of host-pathogen interactions of sepsis and may ultimately
advance strategies for therapeutic reversal of maladaptive inflammatory milieus.
项目摘要:败血症仍然是发病率和死亡率的主要原因,每个病例近5000万例
全球。在没有FDA批准的药物的情况下,对宿主的更好见解的需求很高 -
定义败血症分子发病机理的微生物相互作用。多磷酸盐是线性聚合物
无机磷酸盐(PI)保留了所有生物体中存在的。细菌的代谢
与短链多磷酸盐(PI::PI::PI::PI::PI:
n <100)通常在哺乳动物细胞中发现。生物学效应取决于链长。新兴数据
表明短链元磷酸盐调节血液凝结和感染,而长长的作用
败血症中的链,细菌衍生的多磷酸盐是一个理解的研究领域。我们的初步工作
表明多磷酸或多磷酸细菌缺乏的中和改善了
小鼠塞卡姆结扎和穿刺(CLP)诱导的腹膜败血症。在无菌巨噬细胞培养物中,长期
链多磷酸盐调节LPS/TLR4诱导的巨噬细胞极化,iNOS表达和免疫 -
代谢。在这里,我们建议测试中心假设,即细菌多磷酸是致命的代谢物
在败血症中,由于它们对先天宿主对感染的反应有害。将照明到
多磷酸盐的生物学活性,我们建议解决3个具体目的:(1)研究
多磷酸神经化,我们将使用重组外聚磷酸酶(PPX)蛋白质并表征其
宿主对多数型CLP败血症的反应。单细胞蛋白质组学方法(cite-seq)
旨在捕获入侵专业吞噬细胞的异质性/偏光性
多磷酸盐。多磷酸盐将在小鼠和人类的败血症样品中进行测量。 (2)至
表征多磷酸盐与培养巨噬细胞功能的直接干扰,我们将
将细菌TLR激动剂与具有不同链长的合成多磷酸盐结合在一起。如果是
多磷酸盐曲线stat/irf信号传导途径,用于调节iNOS,l-精氨酸酶,细胞因子/趋化因子,趋化因子,
和代谢重编程(Oxphos,糖酵解)。另外,亲和力纯化与无标签的结合
蛋白质组学将旨在鉴定巨噬细胞中新型的多磷酸盐靶向蛋白。更好
理解多磷酸盐如何干扰败血症的吞噬细胞反应的机制。 (3)在gnotobiotic中
小鼠,用多磷酸盐的大肠杆菌突变体(Δppk)单卵子,我们将研究细菌 -
衍生的多磷酸盐在单晶CLP败血症之前和之后塑造先天免疫。腹膜和
肠粘膜巨噬细胞将被表征并比较其功能,转录组可塑性
和免疫代谢表型。该研究项目将为意外活动提供新颖的见解
败血症宿主 - 病原体相互作用网络中的细菌多磷酸
适应不良炎症环境的热逆转策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Bosmann其他文献
Markus Bosmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Bosmann', 18)}}的其他基金
Interleukin-27 in host response to Legionella infection
Interleukin-27 在宿主对军团菌感染的反应中
- 批准号:
10745091 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Role reversal of MAVS in bacterial sepsis
MAVS 在细菌性脓毒症中的作用逆转
- 批准号:
10439602 - 财政年份:2018
- 资助金额:
$ 53.71万 - 项目类别:
Role reversal of MAVS in bacterial sepsis
MAVS 在细菌性脓毒症中的作用逆转
- 批准号:
10191010 - 财政年份:2018
- 资助金额:
$ 53.71万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
- 批准号:
10646626 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Supplement for Role of Environmental Weathering and Gastrointestinal Digestion on the Bioavailability and Toxicity of Microplastic and Cadmium Mixtures
补充环境风化和胃肠消化对微塑料和镉混合物的生物利用度和毒性的作用
- 批准号:
10854398 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别: