Role reversal of MAVS in bacterial sepsis
MAVS 在细菌性脓毒症中的作用逆转
基本信息
- 批准号:9759979
- 负责人:
- 金额:$ 48.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibodiesAntiviral AgentsBacteriaBacterial InfectionsBacterial RNABlood Coagulation DisordersBlood coagulationCRISPR/Cas technologyCellsCessation of lifeClinical TrialsCoagulation ProcessComplicationConsensusCritical CareCytosolDataDevelopmentDiseaseEngineeringEquilibriumEventExtravasationFDA approvedFailureFamilyFunctional disorderFutureGene DeletionGene ExpressionGenesHistonesHumanImmuneImmune responseImmunosuppressionInfectionInjuryInterleukin-12Interleukin-6Knockout MiceLifeMicrobeMitochondriaMolecularMolecular TargetMorbidity - disease rateMouse ProteinMusOrganOutcomeOuter Mitochondrial MembranePathway interactionsPatternPhagocytesPharmacologic SubstancePharmacologyPhosphorylationProteomeRNARNA HelicaseResearchResistanceRoleSepsisShapesSignal PathwaySignal TransductionSignaling ProteinTBK1 geneTRAF2 geneTestingTherapeutic InterventionTissuesUnited StatesVirusVirus Diseasesbasecytokinecytotoxiceffective therapyexperimental studyextracellularfungusimmunopathologyinjuredinnovationinsightinterestmacrophagemicrobialmonocytemortalitymouse modelneutrophilnovelnovel therapeutic interventionpathogenpathogenic microbepolymerizationpolymicrobial sepsisprogramsprotein activationprotein degradationsensorsepticspatiotemporaltranscription factortranscriptometranscriptome sequencingtranslational study
项目摘要
Sepsis is a frequent and life-threatening complication of microbial infections. It is estimated that more than
750,000 annual cases of sepsis occur in the United States and mortality rates remain around 20-50% despite
recent advances of critical care support. In the current absence of FDA-approved pharmacologic compounds,
there remains an urgent need for a complete characterization of the underlying cellular and molecular
mechanisms of sepsis. The dysregulated host response is a prominent feature during the pathophysiology of
bacterial sepsis, but the delicate balance of its integrating molecular pathways appear not entirely clear.
Mitochondrial antiviral-signaling protein (MAVS) is an adaptor molecule in the outer mitochondrial membrane
and is highly expressed in professional phagocytes. MAVS is activated by the cytoplasmic RNA helicases, RIG-
I and MDA5, and confers protection against viral infections. Surprisingly, our preliminary findings suggest
deletion of MAVS or RIG-I/MDA5 in mice confers immense resistance to mortality and modulates phagocyte
transcriptomes, immunoproteasomes, extracellular traps, IL-6/IL-12 cytokines and blood coagulation during
polymicrobial bacterial sepsis. Bacterial RNAs are a viability-associated pathogen patterns (`vita-PAMPs')
sensed by the MAVS pathway in macrophages. Together, these findings suggest a detrimental role reversal of
MAVS during bacterial sepsis as opposed to protective MAVS pathway functions during infections with viruses.
To test our central hypothesis that MAVS signaling provides a lethal switch for obstructing favorable sepsis
outcomes, we will pursue 3 specific aims: (1) We will study the gene expression, activation mechanisms,
signaling events and functional roles of MAVS in professional phagocytes (macrophages, neutrophils) during
polymicrobial bacterial sepsis. For these studies, mice with total or conditional gene deletion of MAVS, or the
RIG-I/MDA5 sensors are available. MAVS-deficient human macrophages will be generated using CRISPR-Cas9.
(2) We will determine how MAVS-induced transcription factors promote gene expression of immunoproteasome
subunits, what the pleiotropic functions of the immunoproteasome are during bacterial sepsis, and how the
immunoproteasome shapes the proteomes and transcriptomes of macrophages. These studies will include using
triple-knockout mice for all three regulatory immunoproteasome subunits (PSMB8/9/10). (3) We will study how
the MAVS pathway amplifies the harmful molecular sequelae of bacterial sepsis focusing on phagocyte
extracellular traps (NETs/METs), IL-6/IL-12 cytokines, septic coagulopathy and immunosuppression; which all
contribute to tissue injury, organ dysfunction and sepsis lethality. In particular, we will consider a novel role of
the immunoproteasome in subcellular protein degradation for facilitating extracellular trap formation. In summary,
elucidating the previously unsuspected involvement of the MAVS pathway during bacterial infection will provide
novel and important information and may add critical insights for guiding future efforts to develop effective
therapies for sepsis.
脓毒症是微生物感染的常见且危及生命的并发症。估计超过
美国每年发生 750,000 例败血症病例,尽管死亡率仍维持在 20-50% 左右
重症监护支持的最新进展。在目前尚无 FDA 批准的药理化合物的情况下,
仍然迫切需要对潜在的细胞和分子进行完整的表征
败血症的机制。宿主反应失调是病理生理学过程中的一个突出特征
细菌性败血症,但其整合分子途径的微妙平衡似乎并不完全清楚。
线粒体抗病毒信号蛋白 (MAVS) 是线粒体外膜中的接头分子
并且在专业吞噬细胞中高度表达。 MAVS 由细胞质 RNA 解旋酶 RIG- 激活
I 和 MDA5,并提供针对病毒感染的保护。令人惊讶的是,我们的初步研究结果表明
小鼠中 MAVS 或 RIG-I/MDA5 的缺失赋予了对死亡的巨大抵抗力并调节吞噬细胞
转录组、免疫蛋白酶体、细胞外陷阱、IL-6/IL-12 细胞因子和凝血过程
多种微生物细菌性败血症。细菌 RNA 是一种与活力相关的病原体模式(“vita-PAMP”)
由巨噬细胞中的 MAVS 通路感知。总之,这些发现表明了有害的角色逆转
细菌败血症期间的 MAVS 与病毒感染期间的保护性 MAVS 通路功能相反。
检验我们的中心假设,即 MAVS 信号传导提供了阻碍有利脓毒症的致命开关
成果,我们将追求 3 个具体目标:(1)我们将研究基因表达、激活机制,
MAVS 在专业吞噬细胞(巨噬细胞、中性粒细胞)中的信号事件和功能作用
多种微生物细菌性败血症。在这些研究中,MAVS 基因完全或有条件缺失的小鼠,或
提供 RIG-I/MDA5 传感器。 MAVS 缺陷的人类巨噬细胞将使用 CRISPR-Cas9 生成。
(2)我们将确定MAVS诱导的转录因子如何促进免疫蛋白酶体的基因表达
亚基,免疫蛋白酶体在细菌性脓毒症期间的多效性功能是什么,以及如何
免疫蛋白酶体塑造巨噬细胞的蛋白质组和转录组。这些研究将包括使用
所有三个调节性免疫蛋白酶体亚基的三重敲除小鼠(PSMB8/9/10)。 (3)我们将研究如何
MAVS 通路放大了针对吞噬细胞的细菌性败血症的有害分子后遗症
细胞外陷阱 (NETs/METs)、IL-6/IL-12 细胞因子、脓毒性凝血病和免疫抑制;其中所有
导致组织损伤、器官功能障碍和败血症致死。特别是,我们将考虑一个新颖的角色
亚细胞蛋白质降解中的免疫蛋白酶体促进细胞外陷阱的形成。总之,
阐明以前未曾怀疑的 MAVS 通路在细菌感染过程中的参与将提供
新颖且重要的信息,可能会增加重要的见解,以指导未来开发有效的工作
脓毒症的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Bosmann其他文献
Markus Bosmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Bosmann', 18)}}的其他基金
Interleukin-27 in host response to Legionella infection
Interleukin-27 在宿主对军团菌感染的反应中
- 批准号:
10745091 - 财政年份:2023
- 资助金额:
$ 48.24万 - 项目类别:
Role reversal of MAVS in bacterial sepsis
MAVS 在细菌性脓毒症中的作用逆转
- 批准号:
10439602 - 财政年份:2018
- 资助金额:
$ 48.24万 - 项目类别:
Role reversal of MAVS in bacterial sepsis
MAVS 在细菌性脓毒症中的作用逆转
- 批准号:
10191010 - 财政年份:2018
- 资助金额:
$ 48.24万 - 项目类别:
相似国自然基金
新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
- 批准号:32370967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于吡啶盐的可裂解抗体-药物偶联方法研究
- 批准号:22307081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于淬灭抗体的重金属镉快速定量免疫分析
- 批准号:22306074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TFAM条件性敲除重塑树突状细胞免疫代谢增强PD-1抗体抗肿瘤作用的机制研究
- 批准号:82303723
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of antibody drug conjugates as pan-filo antivirals
开发作为泛型抗病毒药物的抗体药物偶联物
- 批准号:
10759731 - 财政年份:2023
- 资助金额:
$ 48.24万 - 项目类别:
GMP manufacturing and IND Filing of IN-002, a potent inhaled muco-trapping antibody therapy for Respiratory Syncytial Virus
IN-002 的 GMP 生产和 IND 备案,这是一种针对呼吸道合胞病毒的有效吸入粘液捕获抗体疗法
- 批准号:
10761398 - 财政年份:2023
- 资助金额:
$ 48.24万 - 项目类别:
Molecularly Engineered Lectins for Intranasal Prophylaxis and Treatment of Coronaviruses
用于鼻内预防和治疗冠状病毒的分子工程凝集素
- 批准号:
10629566 - 财政年份:2023
- 资助金额:
$ 48.24万 - 项目类别:
An L-Aptamer-Displacement Assay for High-Throughput Screening of RNA-Targeted Small Molecule Antivirals
用于高通量筛选 RNA 靶向小分子抗病毒药物的 L 适体置换测定
- 批准号:
10648368 - 财政年份:2023
- 资助金额:
$ 48.24万 - 项目类别:
Defining Protective CMV Immunity after Transplantation
定义移植后的保护性 CMV 免疫
- 批准号:
10639833 - 财政年份:2023
- 资助金额:
$ 48.24万 - 项目类别: